[1]
J. van de Walls, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, J. Stat. Phys. 20 (1979).
Google Scholar
[2]
J. W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958) 258–267.
DOI: 10.1063/1.1744102
Google Scholar
[3]
I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelber, R. Prieler, G.J. Schmitz, J.L.L. Rezende, A phase field concept for multiphase systems, Physica D 94 (1996) 135–147.
DOI: 10.1016/0167-2789(95)00298-7
Google Scholar
[4]
I. Steinbach, F. Pezzolla, A generalized field method for multiphase transformations using interface fields, Physica D134 (1999) 385–393.
DOI: 10.1016/s0167-2789(99)00129-3
Google Scholar
[5]
I. Steinbach, Phase-field models in materials science, Modelling Simul. Mater. Sci. Eng. 17 (2009) 073001.
DOI: 10.1088/0965-0393/17/7/073001
Google Scholar
[6]
P.R. Cha, J. Y Kim, W-T Kim, S.G. Kim, Phase field study on the austenite/ferrite transition in low carbon steel, Mater. Manuf. Proc. 25 (2010) 106–110.
DOI: 10.1080/10426910903153166
Google Scholar
[7]
C.J. Huang, D.J. Browne, S. McFadden, A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steels. Acta Mater. 54 (2005) 11–21.
DOI: 10.1016/j.actamat.2005.08.033
Google Scholar
[8]
Y.G. Cho, J.Y. Kim, H.H. Cho, P.R. Cha, D.W. Suh, J.K. Lee, H.N. Ham, Analysis of transformation plasticity in steel using a finite element method coupled with a phase field model, Plos ONE 7 (2012) e35987.
DOI: 10.1371/journal.pone.0035987
Google Scholar
[9]
A. Yamanaka, T. Takaki, Y. Tomita, Phase-field simulation of austenite to ferrite transformation and Widmanstätten Ferrite Formation in Fe-C Alloy, Mat. Trans. 47 (2006) 2725–2731.
DOI: 10.2320/matertrans.47.2725
Google Scholar
[10]
M.G. Mecozzi, J. Sietsma , S. van der Zwaag, M. Apel, P. Schaffnit, I. Steinbach, Analysis of the γ →α transformation in a C-Mn steel by phase-field modeling. Metall Mater Trans A 36 (2005) 2327–2340.
DOI: 10.1007/s11661-005-0105-4
Google Scholar
[11]
K. Nakajima, M. Apel, I. Steinbach, The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: a multi-phase field study. Acta Mater. 54 (2006) 3665–3672.
DOI: 10.1016/j.actamat.2006.03.050
Google Scholar
[12]
I. Steinbach, M. Apel, The influence of lattice strain on pearlite formation in Fe–C, Acta Mater. 55 (2007) 4817–4822.
DOI: 10.1016/j.actamat.2007.05.013
Google Scholar
[14]
C. Zener, Kinetics of decomposition of austenite, Transactions, AIME 197 (1946) 550–595.
Google Scholar
[15]
O. Shchyglo, E. Borukhovich, P. Engels, R.D. Kamachali, D. Medvedev, I. Steinbach, OpenPhase - the open source library for phase field simulations, Sino-German Cooperation Group Microstructure in Al alloys, Bilateral Symposium 2013, (2013).
Google Scholar
[16]
Hibbit Karlson, Sorensen. ABAQUS/Standard v. 6. 10. User's manual. Hibbit Karlson & Sorensen, Inc., (2010).
Google Scholar
[17]
J.F. Caseiro, J.A. Oliveira,A. Andrade-Campos, Thermomechanical modelling strategies for multiphase steels, Int. J. Mec. Sci. 53 (2011) 720-733.
DOI: 10.1016/j.ijmecsci.2011.06.004
Google Scholar
[18]
C. García de Andrés, F.G. Caballero, C. Capdevila, H.K.D.H. Bhadeshia, Modelling of kinetics and dilatometric behavior of non-isothermal pearlite-to-austenite transformation in an eutectoid steel, Scr. Mater. 39 (1998) 791-796.
DOI: 10.1016/s1359-6462(98)00146-8
Google Scholar