Heat Treatments Analysis of Steel Using Coupled Phase Field and Finite Element Methods

Article Preview

Abstract:

Steels are known for their remarkable mechanical properties being extensively used in industry. Furthermore, phase transformations in metals and alloys, particularly in steels, are widely studied due to their importance. The understanding of the microstructure evolution in this type of materials is vital to reproduce the thermomechanical behaviour and to create new materials. To analyse the thermomechanical behaviour of steel during phase transition of steels, a phase field model was coupled with a finite element model in order to simulate the heat treatment and microstructure evolution of austenite to pearlite/ferrite. The thermoelastoplastic constitutive equations for each phase were implemented through a user routine in commercial FE software. This procedure presents a more quantitative understanding of the phase transformation in steels and a deeper comprehension of the mechanical behaviour of these materials when subject to heat treatments.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

117-124

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. van de Walls, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, J. Stat. Phys. 20 (1979).

Google Scholar

[2] J. W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958) 258–267.

DOI: 10.1063/1.1744102

Google Scholar

[3] I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelber, R. Prieler, G.J. Schmitz, J.L.L. Rezende, A phase field concept for multiphase systems, Physica D 94 (1996) 135–147.

DOI: 10.1016/0167-2789(95)00298-7

Google Scholar

[4] I. Steinbach, F. Pezzolla, A generalized field method for multiphase transformations using interface fields, Physica D134 (1999) 385–393.

DOI: 10.1016/s0167-2789(99)00129-3

Google Scholar

[5] I. Steinbach, Phase-field models in materials science, Modelling Simul. Mater. Sci. Eng. 17 (2009) 073001.

DOI: 10.1088/0965-0393/17/7/073001

Google Scholar

[6] P.R. Cha, J. Y Kim, W-T Kim, S.G. Kim, Phase field study on the austenite/ferrite transition in low carbon steel, Mater. Manuf. Proc. 25 (2010) 106–110.

DOI: 10.1080/10426910903153166

Google Scholar

[7] C.J. Huang, D.J. Browne, S. McFadden, A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steels. Acta Mater. 54 (2005) 11–21.

DOI: 10.1016/j.actamat.2005.08.033

Google Scholar

[8] Y.G. Cho, J.Y. Kim, H.H. Cho, P.R. Cha, D.W. Suh, J.K. Lee, H.N. Ham, Analysis of transformation plasticity in steel using a finite element method coupled with a phase field model, Plos ONE 7 (2012) e35987.

DOI: 10.1371/journal.pone.0035987

Google Scholar

[9] A. Yamanaka, T. Takaki, Y. Tomita, Phase-field simulation of austenite to ferrite transformation and Widmanstätten Ferrite Formation in Fe-C Alloy, Mat. Trans. 47 (2006) 2725–2731.

DOI: 10.2320/matertrans.47.2725

Google Scholar

[10] M.G. Mecozzi, J. Sietsma , S. van der Zwaag, M. Apel, P. Schaffnit, I. Steinbach, Analysis of the γ →α transformation in a C-Mn steel by phase-field modeling. Metall Mater Trans A 36 (2005) 2327–2340.

DOI: 10.1007/s11661-005-0105-4

Google Scholar

[11] K. Nakajima, M. Apel, I. Steinbach, The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: a multi-phase field study. Acta Mater. 54 (2006) 3665–3672.

DOI: 10.1016/j.actamat.2006.03.050

Google Scholar

[12] I. Steinbach, M. Apel, The influence of lattice strain on pearlite formation in Fe–C, Acta Mater. 55 (2007) 4817–4822.

DOI: 10.1016/j.actamat.2007.05.013

Google Scholar

[14] C. Zener, Kinetics of decomposition of austenite, Transactions, AIME 197 (1946) 550–595.

Google Scholar

[15] O. Shchyglo, E. Borukhovich, P. Engels, R.D. Kamachali, D. Medvedev, I. Steinbach, OpenPhase - the open source library for phase field simulations, Sino-German Cooperation Group Microstructure in Al alloys, Bilateral Symposium 2013, (2013).

Google Scholar

[16] Hibbit Karlson, Sorensen. ABAQUS/Standard v. 6. 10. User's manual. Hibbit Karlson & Sorensen, Inc., (2010).

Google Scholar

[17] J.F. Caseiro, J.A. Oliveira,A. Andrade-Campos, Thermomechanical modelling strategies for multiphase steels, Int. J. Mec. Sci. 53 (2011) 720-733.

DOI: 10.1016/j.ijmecsci.2011.06.004

Google Scholar

[18] C. García de Andrés, F.G. Caballero, C. Capdevila, H.K.D.H. Bhadeshia, Modelling of kinetics and dilatometric behavior of non-isothermal pearlite-to-austenite transformation in an eutectoid steel, Scr. Mater. 39 (1998) 791-796.

DOI: 10.1016/s1359-6462(98)00146-8

Google Scholar