Influence of the Process Temperature on the Properties of Friction Stir Welded Blanks Made of Mild Steel and Aluminum

Article Preview

Abstract:

Hybrid components made of steel and aluminum sheet metal are a promising approach for weight reduction for automotive applications. However, lightweight components made of steel and aluminum require suitable joining technologies, particularly if forming operations follow after the welding process. Friction Stir Welding (FSW) is a promising solid-state welding technology for producing dissimilar joints of steel and aluminum. Within this work dissimilar butt joints were produced using sheet metals of mild steel DC04 and the aluminum alloy AA6016 with a thickness of about 1 mm. The FSW joints show approximately 85 % of the tensile strength of the aluminum base material. In metallographic investigations of the produced FSW blanks it was found that the microstructure in the area of the weld seam changes in the aluminum alloy due to the process temperature and plastic deformation. Due to temperature dependent changes of precipitations of the aluminum alloy, temperature measurements have been carried out during the welding process. To find an explanation of the reduction in tensile strength of the FSW joints, short time heat treatment experiments in the temperature range between 250 °C and 450 °C were performed using the aluminum base material. Heat treatments in the temperature range of the measured process temperature result in a reduction of the tensile strength of about 20 % regardless the annealing time.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

1429-1436

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.J. Springer, Fundamental research into the role of intermetallic phases in joining of aluminum alloys and steel, Germany, (2011).

Google Scholar

[2] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith and C.J. Dawes, Friction Welding, U.S. Patent 5, 460, 317, (1995).

Google Scholar

[3] T. Watanabe, H. Takayama and A. Yanagisawa, Joining of aluminum alloy to steel by friction stir welding, in: Journal of Materials Processing Technology, Vol. 178, pp.342-349, (2006).

DOI: 10.1016/j.jmatprotec.2006.04.117

Google Scholar

[4] R.S. Coelho, A. Kostka, J.F. dos Santos and A. Kaysser-Pyzalla, Friction-stir dissimilar welding of aluminium alloy to high strength steels: Mechanical properties and their relation to microstructure, in: Materials Science and Engineering, A 556, pp.175-183, (2012).

DOI: 10.1016/j.msea.2012.06.076

Google Scholar

[5] S. Kahl and W. Osikowicz, Composite Aluminum-Copper Sheet Material by Friction Stir Welding and Cold Rolling, in: Journal of Materials Engineering and Performance, Vol. 22(8), pp.2176-2184, (2013).

DOI: 10.1007/s11665-013-0497-z

Google Scholar

[6] L.E. Murr, A Review of FSW Research in Dissimilar Metal and Alloy System, in: Journal of Materials Engineering and Performance, Vol. 19(8), pp.1071-1089, (2009).

Google Scholar

[7] R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, in: Materials Science and Engineering, R 50, pp.1-78, (2005).

Google Scholar

[8] D.R.G. Achar, J. Ruge and S. Sundaresan, Verbinden von Aluminium und Stahl besonders durch Schweißen, Vol. 56, No. 2, pp.147-149, No. 3, pp.220-223, No. 4, pp.291-293, (1980).

Google Scholar

[9] W.H. Jiang and R. Kovacevic, Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI 1018 steel, in: Proc. Instn Mech. Engrs., Vol. 218, Part B: J. Engineering Manufacture, pp.1323-1331, (2004).

DOI: 10.1243/0954405042323612

Google Scholar

[10] C.J. Dawes, R. Woodward and C. Leroy, Friction Stir Welding (Basic Level), TALAT Lecture 4410, (1999).

Google Scholar

[11] X. Sauvage, A. Dédé, A. Cabello Munoz and B. Huneau, Precipitate stability and recrystallisation in the weld nuggets of friction stir welded Al-Mg-Si and Al-Mg-Sc alloys, in: Material Science Engineering, A491, pp.364-371, (2008).

DOI: 10.1016/j.msea.2008.02.006

Google Scholar

[12] A.S. Adadande, A.M. Naniwadekar, S.P. Gaikwad and A.R. Khot, An overview of Friction stir welded alloys: Microstructure and properties, in: IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), ISSN: 2278-1684, pp.01-06.

DOI: 10.9790/1684-0750106

Google Scholar

[13] A. Göttmann, C. Mertin, L. Mosecker, A. Naumov and M. Bambach: Properties of friction stir welded blanks made from DC04 mild steel and aluminium AA6016, in: Advanced Materials Research, Vol. 769, pp.237-244, (2013).

DOI: 10.4028/www.scientific.net/amr.769.237

Google Scholar

[14] S. Schreijäg, Microstructural and Mechanical Behavior of Deep Drawing DC04 Steel at different length Scales, Schriftreihe des Instituts für Angewandte Materialien – Band 14, Germany, (2012).

Google Scholar

[15] C. Kammer, Aluminium Taschenbücher Digital, Band 1: Grundlagen und Werkstoffe, Germany, (2009).

Google Scholar

[16] G.A. Edwards, K. Stiller, G.L. Dunlop and M.J. Couper, The Precipitation Sequence in Al-Mg-Si Alloys, in: Acta Materialia, Vol. 46, pp.3893-3904, (1998).

DOI: 10.1016/s1359-6454(98)00059-7

Google Scholar

[17] A. Simar, Y. Bréchet, B. de Meester, A. Denquin and T. Pardoen, Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6, in: Acta Materialia, Vol. 55, pp.6133-6143, (2007).

DOI: 10.1016/j.actamat.2007.07.012

Google Scholar

[18] M. Geiger, M. Merklein and U. Vogt, Aluminum tailored heat treated blanks, in: Production Engineering, Vol. 3, pp.401-410, (2009).

DOI: 10.1007/s11740-009-0179-8

Google Scholar

[19] W.F. Miao and D.E. Laughlin, Precipitation Hardening in Aluminum Alloy 6022, in: Scripta Materialia, Vol. 40, No. 7, pp.873-878, (1999).

DOI: 10.1016/s1359-6462(99)00046-9

Google Scholar

[20] M. Kerausch, M. Merklein and D. Staud, Finite Element Analysis for Deep Drawing of Tailored Heat Treated Blanks, in: Advanced Materials Research, Vols. 6-8, pp.343-352, (2005).

Google Scholar

[21] Y.G. An, L. Zhuang, H. Vegter and A. Hurkmans, Fast Aging of the AA6016 Al-Mg-Si Alloy and the Application in Forming Process, in: Metallurgical and Materials Transaction A, Vol. 33, pp.3121-3126, (2002).

DOI: 10.1007/s11661-002-0297-9

Google Scholar

[22] I. Topic, H.W. Höppel, D. Staud, M. Merklein, M. Geiger and M. Göken, Formability of Accumulative Roll Bonded Aluminum AA1050 and AA6016 investigated using Buldge Tests, in: Advanced Engineering Materials, Vol. 10, No. 12, pp.1101-1109, (2008).

DOI: 10.1002/adem.200800167

Google Scholar

[23] Y.S. Sato, H. Kokowa, M. Enomoto and S. Jogan, Microstructural Evolution of 6063 Aluminum during Friction-Stir Welding, in: Metallurgical and Materials Transactions A, Vol. 30A, pp.2429-2437, (1999).

DOI: 10.1007/s11661-999-0251-1

Google Scholar