Unerring Planning of Clinching Processes through the Use of Mathematical Methods

Article Preview

Abstract:

Mechanical joining technologies are becoming increasingly important with the trend towards light and multi-material designs in the automotive industry. Providing robust connection techniques will be of particular importance. Thus, rejection rates are reduced and costs are cut in the parts production. This paper discusses the example of clinching and its potentials and limits concerning FEM based sensitivity analysis and optimization for the joining by forming technology. By determining the sensitivity of the design for relevant connection parameters, the most important values for the optimization of the forming die are derived. On this basis, both, appropriate tools for a particular material combination and other tools for the joining of different thicknesses and sheet materials are designed. Furthermore, a sensitivity analysis of uncertain variables allows to evaluate the robustness of the clinching process in production. Based on these results, methods to increase process robustness or process monitoring in terms of quality assurance can be derived.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

1437-1444

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Held, M. Liewald, M. Sindel, Untersuchungen zum Einfluss werkstofflicher Schwankungen innerhalb eines Coils auf die Umformbarkeit, wt Werkstattstechnik online, 2009, URL: http: /www. werkstattstechnik. de/wt/get_article. php?data[article_id]=51225 (23. 11. 2009).

DOI: 10.37544/1436-4980-2009-10-732

Google Scholar

[2] R. Neugebauer, M. Israel, Clinchen von Stahl- und Aluminiumblechen größerer Dicke. Europäische Forschungsgesellschaft für Blechbearbeitung e.V., Forschungsbericht Nr. 352, Hannover, (2012).

Google Scholar

[3] T. -Q. Pham, Toleranzanalyse und Optimierung eines Finite-Elemente-Strukturmodells mit OptiY, Konferenz-Einzelbericht, Abaqus-Benutzerkonferenz, Baden-Baden, (2006).

Google Scholar

[4] Y. Abe, M. Kishimoto, T. Kato, K. Mori, Joining of hot-dip coated steel sheets by mechanical clinching, in: A.H. van den Boogaard and R. Akkermann, International Journal of Material Forming, Springer, 2009, Volume 2, Issue 1 Supplement, p.291.

DOI: 10.1007/s12289-009-0446-4

Google Scholar

[5] F. Lambiase, Influence of process parameters in mechanical clinching with extensible dies, in: B. J. Davies, The International Journal of Advanced Manufacturing Technology, Springer, 2012, Volume 66, Issue 9 – 12, p.2123 – 2131.

DOI: 10.1007/s00170-012-4486-4

Google Scholar

[6] J. Mucha, The analysis of lock forming mechanism in the clinching joint, in: Materials & Design, Elsevier, 2011, 32 (10), p.4943 – 4954.

DOI: 10.1016/j.matdes.2011.05.045

Google Scholar

[7] J. Will, et al., Robustheitsbewertung in der stochastischen Strukturmechanik, Konferenz-Einzelbericht, NAFEMS Seminar, Wiesbaden, (2003).

Google Scholar

[8] DYNARDO GmbH, optiSLang – the optimizing Structural Language, Software-Documentation version 3. 2. 0, Weimar, (2011).

Google Scholar

[9] F. Jesche, M. Israel, T. Falk, Sensitivitätsanalyse und Robustheitsbewertung beim mechanischen Fügen, in: FOSTA, EFB, DVS, Gemeinsame Forschung in der Mechanischen Fügetechnik, 3. Fügetechnisches Gemeinschaftskolloquium, Rostock, 2013, p.93 – 97.

Google Scholar