Potentials of Ceramic Die Materials for Isothermal Forging Purposes of a Titanium Alloy

Article Preview

Abstract:

The machining of titanium alloys is challenging in every aspect. In order to avoid waste material by cutting processes and to improve mechanical properties, forming processes offer many advantages but harbor also challenges. To face these challenges, especially techniques like isothermal forging are promising methods. Isothermal forging is an appropriate process for achieving a microstructure with excellent properties for high performance applications in aviation technology and turbine construction. One of the main challenges in this special process is the determination of a tool material with a high temperature resistance as well as a high resistance against the work load of forging processes. Given their high hardness, temperature resistance and wear resistance, technical ceramics feature properties classifying them as generally suitable for this application. This article deals with the complete design of an isothermal forging process with ceramic tool material for titanium forming. The material characterization of the forming material by flow curve determination is performed to receive data for FE analyses. Afterwards, a ceramic tool system for isothermal forging is designed and manufactured. The tests show that especially the brittleness of technical ceramics restricts their application as tool material for isothermal titanium forming. Additional investigations on isothermal forging using carbide metal as tool material show the benefit of isothermal titanium forging. The results of metallographic analyses are given.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

202-211

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Genschow, M.: Entwicklung eines Verfahrens zum Schmieden von Titanpulverpreßlingen im beheizten Gesenk; VDI-Verlag, 1984, Düsseldorf, Fortschritt-Berichte, VDI-Reihe 2, Betriebstechnik, Nr. 87.

Google Scholar

[2] Peters, M.; Leyens, C.: Titan und Titanlegierungen, WILEY-VCH Verlag, Weinheim (2002).

Google Scholar

[3] Moeller, E.: Handbuch Konstruktionswerkstoffe Auswahl, Eigenschaften, Anwendung, Carl Hanser Verlag, München 2008, S. 409-445, 447-475.

DOI: 10.3139/9783446435902.fm

Google Scholar

[4] Hegazy, A. A.: Untersuchung zur Warmumformbarkeit von Titanlegierung TiAl6V4, Aluminium Band 59, Heft 6, (1983).

Google Scholar

[5] Siegert, K. (Hrsg. ): Schmieden von Titan, Konferenz-Einzelbericht: Neuere Entwicklungen in der Massivumformung, S. 291-310, (2001).

Google Scholar

[6] Möllman, M.: Schmieden von Titanlegierungen, Schmiede-Journal, September (1999).

Google Scholar

[7] Heisig, E.: Auch für Kleinserien, Isothermes Schmieden im Net-shape-Verfahren, Schweizer Maschinenmarkt, (1995).

Google Scholar

[8] Schepp, P. P.: Isothermes Umformen, Endkonturnahe Formgebung für anspruchsvolle Werkstoffe und komplexe Konturen, FMB Fertigungs-Technologie, Band 66, Heft 2, S. 96-102, (1989).

Google Scholar

[9] Machai, C.: Grundlagenuntersuchung zu Zerspanung von β-Titanlegierungen unterschiedlicher Mikrostruktur, Vulkan Verlag, Essen 2012, S. 3-20.

Google Scholar

[10] Tietz, H. -D.: Technische Keramik Aufbau, Eigenschaften, Herstellung, Bearbeitung, Prüfung, VDI-Verlag GmbH, Düsseldorf (1994).

DOI: 10.1002/maco.19950460316

Google Scholar

[11] Doege, E.: Meyer-Nolkemper, H.; Saeed, I.: Fließkurvenatlas metallischer Werkstoffe, Hanser Verlag, (1986).

Google Scholar