[1]
A. Charmetant, J. G. Orliac, E. Vidal-Sallé, P. Boisse, Hyperelastic model for large deformation analyses of 3D interlock composite preforms, Compos Sci Technol, 72 (2012) 1352‑1360.
DOI: 10.1016/j.compscitech.2012.05.006
Google Scholar
[2]
N. Hamila, P. Boisse, Locking in simulation of composite reinforcement deformations. Analysis and treatment, Compos. Part A, 53 (2013) 109‑117.
DOI: 10.1016/j.compositesa.2013.06.001
Google Scholar
[3]
X. Yu, B. Cartwright, D. McGuckin, L. Ye, Y. -W. Mai, Intra-Ply shear locking in finite element analyses of woven fabric forming processes, Compos. Part A, 37 (2006) 790-803.
DOI: 10.1016/j.compositesa.2005.04.024
Google Scholar
[4]
R. H. W. ten Thije, R. Akkerman, Solutions to intra-ply shear locking in finite element analyses of fibre reinforced materials, Compos. Part A, 39 (2008) 1167‑1176.
DOI: 10.1016/j.compositesa.2008.03.014
Google Scholar
[5]
M. Itskov, N. Aksel, A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function, Int. J. Solids Struct., 41 (2004) 3833‑3848.
DOI: 10.1016/j.ijsolstr.2004.02.027
Google Scholar
[6]
Z. Quanshui, J. P. Boehler, Tensor function representations as applied to formulating constitutive laws for clinotropic materials, Acta Mech Sin, 10 (1994) 336‑348.
DOI: 10.1007/bf02486676
Google Scholar
[7]
J. Wang, R. Paton, J. R. Page, The draping of woven fabric preforms and prepregs for production of polymer composite components, Compos. Part Appl. Sci. Manuf., 30 (1999) 757‑765.
DOI: 10.1016/s1359-835x(98)00187-0
Google Scholar
[8]
P. Boisse, N. Hamila, E. Vidal-Sallé, F. Dumont, Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile and in-plane shear and bending stiffnesses, Compos. Sci. Technol., 71 (2011) 683‑692.
DOI: 10.1016/j.compscitech.2011.01.011
Google Scholar
[9]
A. G. Prodromou, J. Chen, On the relationship between shear angle and wrinkling of textile composite preforms, Compos. Part A, 28A (1997) 491‑503.
DOI: 10.1016/s1359-835x(96)00150-9
Google Scholar
[10]
P. Potluri, D. A. P. Ciurezu, R. B. Ramgulam, Measurement of meso-scale shear deformations for modelling textile composites, Compos. Part Appl. Sci. Manuf., 37 (2006) 303‑314.
DOI: 10.1016/j.compositesa.2005.03.032
Google Scholar
[11]
W. K. Liu, J. S. -J. Ong, R. A. Uras, Finite element stabilization matrices-a unification approach, Comput Meth Appl Mech Eng, 53 (1985) 13‑46.
Google Scholar
[12]
B. C. Koh, N. Kikuchi, New improved hourglass control for bilinear and trilinear elements in anisotropic linear elasticity, Comput Meth Appl Mech Eng, 65 (1987) 1‑46.
DOI: 10.1016/0045-7825(87)90181-2
Google Scholar
[13]
Y. Y. Zhu, S. Cescotto, Unified and mixed formulation of the 8-node hexahedral elements by assumed strain method, Comput Meth Appl Mech Eng, 129 (1996) 177‑209.
DOI: 10.1016/0045-7825(95)00835-7
Google Scholar
[14]
D. P. Flanagan, T. Belytschko, A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. Numer. Methods Eng., 17 (1981) 679‑706.
DOI: 10.1002/nme.1620170504
Google Scholar
[15]
T. Belytschko, L. P. Bindeman, Assumed strain stabilization of the eight node hexahedral element, Comput Meth Appl Mech Eng, 105(1993) 225‑260.
DOI: 10.1016/0045-7825(93)90124-g
Google Scholar
[16]
T. Belytschko, J. S. -J. Ong, W. K. Liu, J. M. Kennedy, Hourglass control in linear and nonlinear problems, Comput Meth Appl Mech Eng, 43 (1984) 251‑276.
DOI: 10.1016/0045-7825(84)90067-7
Google Scholar
[17]
M. A. Puso, A highly efficient enhanced assumed strain physically stabilized hexahedral element, Int J Numer Methods Eng, 49 (2000) 1029‑1064.
DOI: 10.1002/1097-0207(20001120)49:8<1029::aid-nme990>3.0.co;2-3
Google Scholar
[18]
T. Belytschko, L. P. Bindeman, Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems, Comput Meth Appl Mech Eng, 88 (1990) 311‑340.
DOI: 10.1016/0045-7825(91)90093-l
Google Scholar