Locking and Stability of 3D Woven Composite Reinforcements

Article Preview

Abstract:

3D woven composite reinforcements preforming simulations are an unavoidable step of composite part processing. The present paper deals with thick composite fabric behavior modelling and issues arising during the numerical simulation of preforming. After the description of the independent deformation modes of initially orthotropic reinforcements, a physically motivated and invariant based hyperelastic strain energy density is introduced. This constitutive law is used to show the limitations of a classical finite element formulation in 3D fabric simulations. Tension locking is highlighted in bias extension tests and a reduced integration hexahedral finite element with specific physical hourglass stabilization is proposed. Instabilities due to the highly anisotropic behavior law, witnessed in bending dominated situations, are exposed and a stabilization procedure is initiated.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

292-299

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Charmetant, J. G. Orliac, E. Vidal-Sallé, P. Boisse, Hyperelastic model for large deformation analyses of 3D interlock composite preforms, Compos Sci Technol, 72 (2012) 1352‑1360.

DOI: 10.1016/j.compscitech.2012.05.006

Google Scholar

[2] N. Hamila, P. Boisse, Locking in simulation of composite reinforcement deformations. Analysis and treatment, Compos. Part A, 53 (2013) 109‑117.

DOI: 10.1016/j.compositesa.2013.06.001

Google Scholar

[3] X. Yu, B. Cartwright, D. McGuckin, L. Ye, Y. -W. Mai, Intra-Ply shear locking in finite element analyses of woven fabric forming processes, Compos. Part A, 37 (2006) 790-803.

DOI: 10.1016/j.compositesa.2005.04.024

Google Scholar

[4] R. H. W. ten Thije, R. Akkerman, Solutions to intra-ply shear locking in finite element analyses of fibre reinforced materials, Compos. Part A, 39 (2008) 1167‑1176.

DOI: 10.1016/j.compositesa.2008.03.014

Google Scholar

[5] M. Itskov, N. Aksel, A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function, Int. J. Solids Struct., 41 (2004) 3833‑3848.

DOI: 10.1016/j.ijsolstr.2004.02.027

Google Scholar

[6] Z. Quanshui, J. P. Boehler, Tensor function representations as applied to formulating constitutive laws for clinotropic materials, Acta Mech Sin, 10 (1994) 336‑348.

DOI: 10.1007/bf02486676

Google Scholar

[7] J. Wang, R. Paton, J. R. Page, The draping of woven fabric preforms and prepregs for production of polymer composite components, Compos. Part Appl. Sci. Manuf., 30 (1999) 757‑765.

DOI: 10.1016/s1359-835x(98)00187-0

Google Scholar

[8] P. Boisse, N. Hamila, E. Vidal-Sallé, F. Dumont, Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile and in-plane shear and bending stiffnesses, Compos. Sci. Technol., 71 (2011) 683‑692.

DOI: 10.1016/j.compscitech.2011.01.011

Google Scholar

[9] A. G. Prodromou, J. Chen, On the relationship between shear angle and wrinkling of textile composite preforms, Compos. Part A, 28A (1997) 491‑503.

DOI: 10.1016/s1359-835x(96)00150-9

Google Scholar

[10] P. Potluri, D. A. P. Ciurezu, R. B. Ramgulam, Measurement of meso-scale shear deformations for modelling textile composites, Compos. Part Appl. Sci. Manuf., 37 (2006) 303‑314.

DOI: 10.1016/j.compositesa.2005.03.032

Google Scholar

[11] W. K. Liu, J. S. -J. Ong, R. A. Uras, Finite element stabilization matrices-a unification approach, Comput Meth Appl Mech Eng, 53 (1985) 13‑46.

Google Scholar

[12] B. C. Koh, N. Kikuchi, New improved hourglass control for bilinear and trilinear elements in anisotropic linear elasticity, Comput Meth Appl Mech Eng, 65 (1987) 1‑46.

DOI: 10.1016/0045-7825(87)90181-2

Google Scholar

[13] Y. Y. Zhu, S. Cescotto, Unified and mixed formulation of the 8-node hexahedral elements by assumed strain method, Comput Meth Appl Mech Eng, 129 (1996) 177‑209.

DOI: 10.1016/0045-7825(95)00835-7

Google Scholar

[14] D. P. Flanagan, T. Belytschko, A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. Numer. Methods Eng., 17 (1981) 679‑706.

DOI: 10.1002/nme.1620170504

Google Scholar

[15] T. Belytschko, L. P. Bindeman, Assumed strain stabilization of the eight node hexahedral element, Comput Meth Appl Mech Eng, 105(1993) 225‑260.

DOI: 10.1016/0045-7825(93)90124-g

Google Scholar

[16] T. Belytschko, J. S. -J. Ong, W. K. Liu, J. M. Kennedy, Hourglass control in linear and nonlinear problems, Comput Meth Appl Mech Eng, 43 (1984) 251‑276.

DOI: 10.1016/0045-7825(84)90067-7

Google Scholar

[17] M. A. Puso, A highly efficient enhanced assumed strain physically stabilized hexahedral element, Int J Numer Methods Eng, 49 (2000) 1029‑1064.

DOI: 10.1002/1097-0207(20001120)49:8<1029::aid-nme990>3.0.co;2-3

Google Scholar

[18] T. Belytschko, L. P. Bindeman, Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems, Comput Meth Appl Mech Eng, 88 (1990) 311‑340.

DOI: 10.1016/0045-7825(91)90093-l

Google Scholar