Friction Coefficient Identification in Roll Forming Processes

Article Preview

Abstract:

Roll forming process is an interesting process for the production of complex profiles because of its high production rate, low investment and efficient use of material. Furthermore, and due to their high yield strength, this technology is suitable for the forming of Advanced High Strength Steels which are being increasingly introduced in the automobile sector.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

425-435

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. T. Halmos, Roll Forming Handbook, CRC, 2005. pp.3-4.

Google Scholar

[2] K. Sweeney, U. Grunewald. The application of roll forming for automotive structural parts. Journal of Materials Processing Technology, 132(1), pp.9-15, (2003).

DOI: 10.1016/s0924-0136(02)00193-0

Google Scholar

[3] Halmos, G.T., 1983. Trends in roll forming processes. Sheet Metal Industries, 60 (1), pp.38-41.

Google Scholar

[4] E. Saenz de Argandoña, A. Aztiria, C. Garcia, N. Arana, P. Fillatreau, T. Terzyk. Forming processes control by means of artificial intelligence techniques. Robotics and Computer-Integrated Manufacturing, vol 24 (2008), pp.773-779.

DOI: 10.1016/j.rcim.2008.03.014

Google Scholar

[5] P. Fillatreau, E. Saenz de Argandoña, A. Aztiria, C. Garcia, N. Arana, F. Bernard, T. Terzyk. Sheet metal forming global control system based on artificial vision system and force-acoustic sensors. Robotics and Computer-Integrated Manufacturing, vol 24 (2008).

DOI: 10.1016/j.rcim.2008.03.016

Google Scholar

[6] D. Bhattarcharyya, P. Smith, S. Thadakamalla, I. Collins. The prediction of roll load in cold roll forming. Journal of Mechanical Working Technology, vol 14 (1987), no3, pp.363-379.

DOI: 10.1016/0378-3804(87)90019-2

Google Scholar

[7] M. Lindgren. Experimental and computational investigations of the roll load and roll torque when high strength steel is roll formed. Journal of Material Processing Technology, vol 191, no 1-3, pp.44-47, (2007).

DOI: 10.1016/j.jmatprotec.2007.03.041

Google Scholar

[8] J. Larrañaga, L. Galdos, L. Uncilla, A. Etxaleku. Development and validation of a numerical model for sheet metal roll forming. International Journal of Material Forming, vol 3, pp.151-154, (2010).

DOI: 10.1007/s12289-010-0729-9

Google Scholar

[9] E. Saenz de Argandoña, L. Galdos, A. Legarda, J. Larrañaga. Roll forming set up influence in the forming forces and profile quality. Key Engineering Materials Vols. 504-506 (2012) pp.1249-1254.

DOI: 10.4028/www.scientific.net/kem.504-506.1249

Google Scholar

[10] N. Rebelo, J. C. Nagtegaal, L. M. Taylor, and R. Passman. Comparison of implicit and explicit finite element methods in the simulation of metal forming processes. In 4th International Conference on Numerical Methods in Industrial Forming Processes - NUMIFORM '92, p.99. Sophia-Antipolis, France, (1992).

Google Scholar

[11] N. Rebelo, J. C. Nagtegaal, L. M. Taylor, and R. Passman. Industrial application of implicit and explicit finite element methods to forming processes. In Winter Annual Meeting of the American Society of Mechanical Engineering, vol. 5, pp.67-76. Anaheim, CA, USA, (1992).

Google Scholar

[12] F. Heislitz, H. Livatyali, M.A. Ahmetoglu, G.L. Kinzel, and T. Altan. Simulation of roll forming process with the 3-D FEM code PAM-STAMP. Journal of Materials Processing Technology, vol. 59(1-2): pp.59-67, (1996).

DOI: 10.1016/0924-0136(96)02287-x

Google Scholar

[13] S. Hong, S. Lee, and N. Kim. A parametric study on forming length in roll forming. In 5th Asia Pacific Conference on Materials processing, APCMP2001, vol. 113, pp.774-778. Seoul, Korea, (2001).

DOI: 10.1016/s0924-0136(01)00711-7

Google Scholar

[14] M. A. Sheikh and R. R. Palavilayil. An assessment of nite element software for application to the roll-forming process. Journal of Materials Processing Technology, vol. 180(1): pp.221-232, (2006).

DOI: 10.1016/j.jmatprotec.2006.06.009

Google Scholar

[15] M. Lindgren. Validation of finite element model of roll forming. In International Deep-drawing Research Group 2008, IDDRG2008. Olofstrom, Sweden, (2008).

Google Scholar

[16] M. Lindgren. Finite element model of roll forming of a U-channel profile. In International Conference on Technology of Plasticity, ICTP2005. Verona, Italy, (2005).

Google Scholar

[17] M. Lindgren. Cold roll forming of a U-channel made of high strength steel. Journal of Materials Processing Technology, vol. 186(1): p.77{81, (2007).

DOI: 10.1016/j.jmatprotec.2006.12.017

Google Scholar

[18] S. H. Jeong, S. H. Lee, G. H. Kim, H. J. Seo, and T. H. Kim. Computer simulation of U-channel for under-rail roll forming using rigid-plastic finite element methods. Journal of Materials Processing Technology, vol. 201(1-3): p.118{122, (2008).

DOI: 10.1016/j.jmatprotec.2007.11.130

Google Scholar

[19] J. Paralikas. Investigation of the efects of main roll-forming process parameters on quality for a v-section profile from AHSS. International Journal of Advanced Manufacturing Technology, vol. 44: p.223, (2009).

DOI: 10.1007/s00170-008-1822-9

Google Scholar

[20] M. Lundberg, A. Melander, L. Troive, and S. Maulitz. A new test for cracking in roll forming. In 1st International Congress on Roll Forming: RollFORM09, pp.125-131. Bilbao, Spain, (2009).

Google Scholar

[21] M.S. Tehrani, P. Hartley, H.M. Naeini, and H. Khademizadeh. Localised edge buckling in cold roll-forming of symmetric channel section. Thin-walled structures, vol. 44(2): p.184{196, (2006).

DOI: 10.1016/j.tws.2006.01.008

Google Scholar

[22] E. Gulceken, A. Abee, A. Sedlmaier, and H. Livatyali. Finite element simulation of flexible roll forming: A case study on variable width U channel. In 4th International Conference and Exhibition on Desing and Production of MACHINES and DIES/MOLDS, Cesme, TURKEY, pp.21-23. (2007).

Google Scholar

[23] Q. V. Bui and J. P. Ponthot. Numerical simulation of cold roll-forming processes. Journal of Materials Processing Technology, vol. 202(1-3): p.275{282, (2008).

DOI: 10.1016/j.jmatprotec.2007.08.073

Google Scholar

[24] F. Roure, M.M. Pastor, M. Casafont, and J. Bonada. Simulation of the roll-forming process for the determination of relevant residual stresses of cold-formed steel menbers. In 1st International Congress on Roll Forming: RollFORM09, pp.41-48. Bilbao, Spain, (2009).

Google Scholar

[25] G. Zeng, S.H. Li, Z.Q. Yu, and X.M. Lai. Optimization design of roll profiles for cold roll forming based on response surface method. Materials & Design, vol. 30(6): pp.1930-1938, (2009).

DOI: 10.1016/j.matdes.2008.09.018

Google Scholar

[26] Marc® 2010 Volume A: Theory and User Information. Chapter 8 p.556.

Google Scholar

[27] N. Bay, D.D. Olsson, J.L. Andreasen. Lubricant test methods for sheet metal forming. Tribology International 41 (2008) 844–853.

DOI: 10.1016/j.triboint.2007.11.017

Google Scholar