[1]
G. Byrne, D. Dornfeld, and B. Denkena. Advancing cutting technology. CIRP Annals - Manufacturing Technology, 52(2): 483 - 507, (2003).
DOI: 10.1016/s0007-8506(07)60200-5
Google Scholar
[2]
I. Arriola, E. Whitenton, J. Heigel, and P.J. Arrazola. Relationship between machinability index and in-process parameters during orthogonal cutting of steels. CIRP Annals - Manufacturing Technology, 60(1): 93 - 96, (2011).
DOI: 10.1016/j.cirp.2011.03.082
Google Scholar
[3]
R. M'Saoubi and H. Chandrasekaran. Experimental study and modelling of tool temperature distribution in orthogonal cutting of aisi 316l and aisi 3115 steels. The International Journal of Advanced Manufacturing Technology, pages 1-13, 2011. 10. 1007/s00170-011-3257-y.
DOI: 10.1007/s00170-011-3257-y
Google Scholar
[4]
P.J. Arrazola, I. Arriola, M.A. Davies, A.L. Cooke, and B.S. Dutterer. The effect of machinability on thermal fields in orthogonal cutting of AISI 4140 steel. CIRP Annals - Manufacturing Technology, 57(1): 65 - 68, (2008).
DOI: 10.1016/j.cirp.2008.03.139
Google Scholar
[5]
T. Ozel. Finite element simulation of machining nickel-based alloy in the presence of tool flank wear. In Proceedings of the 12th CIRP Conference on Modelling of Machining Operations, Donostia-San Sebastian, Spain, (2009).
Google Scholar
[6]
Thomas Childs, Katsuhiro Maekawa, Toshiyuki Obikawa, and Yasuo Yamane. 4 - tool damage. In Thomas Childs, Katsuhiro Maekawa, Toshiyuki Obikawa, and Yasuo Yamane, editors, Metal Machining, pages 118 - 135. Butterworth-Heinemann, Oxford, (2000).
DOI: 10.1016/b978-0-08-052402-3.50007-1
Google Scholar
[7]
E. Usui, T. Shirakashi, and T. Kitagawa. Analytical prediction of three dimensional cutting process - part 3 : Cutting temperature and crater wear of carbide tool. Journal of Engineering for Industry, Transactions of ASME, 100: 236 - 243, (1978).
DOI: 10.1115/1.3439415
Google Scholar
[8]
J. F. Archard. Contact and rubbing of flat surfaces. Journal of Applied Physics, 24: 981 - 988, (1953).
DOI: 10.1063/1.1721448
Google Scholar
[9]
H. Takeyama and T. Murata. Basic investigations on tool wear. Journal of Engineering for Industry, Transactions of ASME, 85: 33 - 38, (1963).
Google Scholar
[10]
A. Attanasio, E. Ceretti, A. Fiorentino, C. Cappellini, and C. Giardini. Investigation and fembased simulation of tool wear in turning operations with uncoated carbide tools. Wear, 269(5- 6): 344 - 350, (2010).
DOI: 10.1016/j.wear.2010.04.013
Google Scholar
[11]
L. Filice, D. Umbrello, S. Beccari, and F. Micari. On the fe codes capability for tool temperature calculation in machining processes. Journal of Materials Processing Technology, 174(1-3): 286 - 292, (2006).
DOI: 10.1016/j.jmatprotec.2006.01.012
Google Scholar
[12]
M. Olsson, B. Stridh, S. Soderberg, and U. Jansson. Sliding wear of hard materials - the importance of a fresh countermaterial surface. Wear, 124(2): 195 - 216, (1988).
DOI: 10.1016/0043-1648(88)90244-x
Google Scholar
[13]
C. Claudin, A. Mondelin, J. Rech, and G. Fromentin. Effects of a straight oil on friction at the tool-workmaterial interface in machining. International Journal of Machine Tools and Manufacture, 50(8): 681 - 688, (2010).
DOI: 10.1016/j.ijmachtools.2010.04.013
Google Scholar
[14]
J. Rech, P.J. Arrazola, C. Claudin, C. Courbon, F. Pusavec, and J. Kopac. Characterisation of friction and heat partition coefficients at the tool-workmaterial interface in machining. CIRP Annals Manufacturing Technology, 62(1): 79 - 82, (2013).
DOI: 10.1016/j.cirp.2013.03.099
Google Scholar
[15]
O. Klinkova, J. Rech, S. Drapier, and J. -M. Bergheau. Characterization of friction properties at the workmaterial/cutting tool interface during the machining of randomly structured carbon fibers reinforced polymer with carbide tools under dry conditions. Tribology International, 44(12): 2050 - 2058, (2011).
DOI: 10.1016/j.triboint.2011.09.006
Google Scholar
[16]
H.O. Gekonde and S.V. Subramanian. Tribology of tool-chip interface and tool wear mechanisms. Surface and Coatings Technology, 149: 151 - 160, (2002).
DOI: 10.1016/s0257-8972(01)01488-8
Google Scholar
[17]
J. Hwang and S. Chandrasekar. Contact conditions at the chip-tool interface in machining. International Journal of Precision Engineering and Manufacturing, 12: 183-193, 2011. 10. 1007/s12541-011-0026-7.
DOI: 10.1007/s12541-011-0026-7
Google Scholar
[18]
H. BenAbdelali. Caracterisation et modelisation des mecanismes tribologiques aux interfaces outils-pieces-copeaux en usinage a sec de l'acier C45. PhD thesis, Ecole Nationale d'Ingenieurs de Monastir / EC Lyon, (2013).
Google Scholar
[19]
C. Courbon. Vers une modelisation physique de la coupe des aciers speciaux : integration du comportement metallurgique et des phenomenes tribologiques et thermiques aux interfaces. PhD thesis, EC Lyon, (2011).
Google Scholar
[20]
F. Valiorgue, J. Rech, H. Hamdi, C. Bonnet, P. Gilles, and J.M. Bergheau. Modelling of friction phenomena in material removal processes. Journal of Materials Processing Technology, 201: 450 - 453, (2008).
DOI: 10.1016/j.jmatprotec.2007.11.266
Google Scholar
[21]
H. BenAbdelali, C. Courbon, J. Rech, W. Ben Salem, A. Dogui, and Ph. Kapsa. Identification of a friction model at the tool-chip-workpiece interface in dry machining of a aisi 1045 steel with a tin coated carbide tool. Journal of Tribology, 133(4): 042201, (2011).
DOI: 10.1115/1.4004879
Google Scholar