A First Step towards a Tribological Approach to Investigate Cutting Tool Wear

Article Preview

Abstract:

The present work is motivated by the will to improve Finite Element (FE) Modelling of cutting tool wear. As a first step, the characterisation of wear mechanisms and identification of a wear model appear to be fundamental. The key idea of this work consists in using a dedicated tribometer, able to simulate relevant tribological conditions encountered in cutting (pressure, velocity). The tribometer can be used to estimate the evolution of wear versus time for various tribological conditions (pressure, velocity, temperature). Based on this design of experiments, it becomes possible to identify analytically a wear model. As a preliminary study this paper will be focused on the impact of sliding speed at the contact interface between 304L stainless steel and tungsten carbide (WC) coated with titanium nitride (TiN) pin. This experiment enables to observe a modification of wear phenomena between sliding speeds of 60 m/min and 180 m/min. Finally, the impact on macroscopic parameters has been observed.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

452-459

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Byrne, D. Dornfeld, and B. Denkena. Advancing cutting technology. CIRP Annals - Manufacturing Technology, 52(2): 483 - 507, (2003).

DOI: 10.1016/s0007-8506(07)60200-5

Google Scholar

[2] I. Arriola, E. Whitenton, J. Heigel, and P.J. Arrazola. Relationship between machinability index and in-process parameters during orthogonal cutting of steels. CIRP Annals - Manufacturing Technology, 60(1): 93 - 96, (2011).

DOI: 10.1016/j.cirp.2011.03.082

Google Scholar

[3] R. M'Saoubi and H. Chandrasekaran. Experimental study and modelling of tool temperature distribution in orthogonal cutting of aisi 316l and aisi 3115 steels. The International Journal of Advanced Manufacturing Technology, pages 1-13, 2011. 10. 1007/s00170-011-3257-y.

DOI: 10.1007/s00170-011-3257-y

Google Scholar

[4] P.J. Arrazola, I. Arriola, M.A. Davies, A.L. Cooke, and B.S. Dutterer. The effect of machinability on thermal fields in orthogonal cutting of AISI 4140 steel. CIRP Annals - Manufacturing Technology, 57(1): 65 - 68, (2008).

DOI: 10.1016/j.cirp.2008.03.139

Google Scholar

[5] T. Ozel. Finite element simulation of machining nickel-based alloy in the presence of tool flank wear. In Proceedings of the 12th CIRP Conference on Modelling of Machining Operations, Donostia-San Sebastian, Spain, (2009).

Google Scholar

[6] Thomas Childs, Katsuhiro Maekawa, Toshiyuki Obikawa, and Yasuo Yamane. 4 - tool damage. In Thomas Childs, Katsuhiro Maekawa, Toshiyuki Obikawa, and Yasuo Yamane, editors, Metal Machining, pages 118 - 135. Butterworth-Heinemann, Oxford, (2000).

DOI: 10.1016/b978-0-08-052402-3.50007-1

Google Scholar

[7] E. Usui, T. Shirakashi, and T. Kitagawa. Analytical prediction of three dimensional cutting process - part 3 : Cutting temperature and crater wear of carbide tool. Journal of Engineering for Industry, Transactions of ASME, 100: 236 - 243, (1978).

DOI: 10.1115/1.3439415

Google Scholar

[8] J. F. Archard. Contact and rubbing of flat surfaces. Journal of Applied Physics, 24: 981 - 988, (1953).

DOI: 10.1063/1.1721448

Google Scholar

[9] H. Takeyama and T. Murata. Basic investigations on tool wear. Journal of Engineering for Industry, Transactions of ASME, 85: 33 - 38, (1963).

Google Scholar

[10] A. Attanasio, E. Ceretti, A. Fiorentino, C. Cappellini, and C. Giardini. Investigation and fembased simulation of tool wear in turning operations with uncoated carbide tools. Wear, 269(5- 6): 344 - 350, (2010).

DOI: 10.1016/j.wear.2010.04.013

Google Scholar

[11] L. Filice, D. Umbrello, S. Beccari, and F. Micari. On the fe codes capability for tool temperature calculation in machining processes. Journal of Materials Processing Technology, 174(1-3): 286 - 292, (2006).

DOI: 10.1016/j.jmatprotec.2006.01.012

Google Scholar

[12] M. Olsson, B. Stridh, S. Soderberg, and U. Jansson. Sliding wear of hard materials - the importance of a fresh countermaterial surface. Wear, 124(2): 195 - 216, (1988).

DOI: 10.1016/0043-1648(88)90244-x

Google Scholar

[13] C. Claudin, A. Mondelin, J. Rech, and G. Fromentin. Effects of a straight oil on friction at the tool-workmaterial interface in machining. International Journal of Machine Tools and Manufacture, 50(8): 681 - 688, (2010).

DOI: 10.1016/j.ijmachtools.2010.04.013

Google Scholar

[14] J. Rech, P.J. Arrazola, C. Claudin, C. Courbon, F. Pusavec, and J. Kopac. Characterisation of friction and heat partition coefficients at the tool-workmaterial interface in machining. CIRP Annals Manufacturing Technology, 62(1): 79 - 82, (2013).

DOI: 10.1016/j.cirp.2013.03.099

Google Scholar

[15] O. Klinkova, J. Rech, S. Drapier, and J. -M. Bergheau. Characterization of friction properties at the workmaterial/cutting tool interface during the machining of randomly structured carbon fibers reinforced polymer with carbide tools under dry conditions. Tribology International, 44(12): 2050 - 2058, (2011).

DOI: 10.1016/j.triboint.2011.09.006

Google Scholar

[16] H.O. Gekonde and S.V. Subramanian. Tribology of tool-chip interface and tool wear mechanisms. Surface and Coatings Technology, 149: 151 - 160, (2002).

DOI: 10.1016/s0257-8972(01)01488-8

Google Scholar

[17] J. Hwang and S. Chandrasekar. Contact conditions at the chip-tool interface in machining. International Journal of Precision Engineering and Manufacturing, 12: 183-193, 2011. 10. 1007/s12541-011-0026-7.

DOI: 10.1007/s12541-011-0026-7

Google Scholar

[18] H. BenAbdelali. Caracterisation et modelisation des mecanismes tribologiques aux interfaces outils-pieces-copeaux en usinage a sec de l'acier C45. PhD thesis, Ecole Nationale d'Ingenieurs de Monastir / EC Lyon, (2013).

Google Scholar

[19] C. Courbon. Vers une modelisation physique de la coupe des aciers speciaux : integration du comportement metallurgique et des phenomenes tribologiques et thermiques aux interfaces. PhD thesis, EC Lyon, (2011).

Google Scholar

[20] F. Valiorgue, J. Rech, H. Hamdi, C. Bonnet, P. Gilles, and J.M. Bergheau. Modelling of friction phenomena in material removal processes. Journal of Materials Processing Technology, 201: 450 - 453, (2008).

DOI: 10.1016/j.jmatprotec.2007.11.266

Google Scholar

[21] H. BenAbdelali, C. Courbon, J. Rech, W. Ben Salem, A. Dogui, and Ph. Kapsa. Identification of a friction model at the tool-chip-workpiece interface in dry machining of a aisi 1045 steel with a tin coated carbide tool. Journal of Tribology, 133(4): 042201, (2011).

DOI: 10.1115/1.4004879

Google Scholar