Numerical Study of the Impact of Constitutive Modelling on the Evolution of Necking in the Case of a Tensile Test on C68 Grade Steel

Article Preview

Abstract:

This article deals with numerical simulation of necking. It draws the attention onto the importance of the description of strain-hardening and the effects on the evolution of necking. In order to compare necking evolution in relation with different plasticity models, a tracking procedure which consists in determining the evolution over time of discharged volumes of the sample is adopted. Models that take into account physical phenomena at the microscopic level and especially the heterogeneities of materials from a mechanical point of view seem well suited to fit experimental evidence connected to necking.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

521-528

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Balland, C. Déprés, R. Billard, L. Tabourot, Physically Based Kinematic Hardening Modelling of Single Crystal, in: American Institute of Physics, 2011: p.91–96.

DOI: 10.1063/1.3589497

Google Scholar

[2] L. Tabourot, P. Balland, J. Raujol-Veillé, M. Vautrot, C. Déprés, F. Toussaint, Compartmentalized Model for the Mechanical Behavior of Titanium, Key Eng. Mater. 504-506 (2012) 673–678.

DOI: 10.4028/www.scientific.net/kem.504-506.673

Google Scholar

[3] L. Tabourot, P. Balland, M. Vautrot, O.S. Hopperstad, J. Raujol-Veillé, F. Toussaint, Characterization and modeling of the elastic behavior of a XC68 grade steel used at high strain rates and high temperatures, Key Eng. Mater. 554-55è (2013).

DOI: 10.4028/www.scientific.net/kem.554-557.1116

Google Scholar

[4] S. Dumoulin, L. Tabourot, C. Chappuis, P. Vacher, R. Arrieux, Determination of the equivalent stress–equivalent strain relationship of a copper sample under tensile loading, J. Mater. Process. Technol. 133 (2003) 79–83.

DOI: 10.1016/s0924-0136(02)00247-9

Google Scholar

[5] L. Tabourot, P. Vacher, T. Coudert, F. Toussaint, R. Arrieux, Numerical determination of strain localisation during finite element simulation of deep-drawing operations, J. Mater. Process. Technol. 159 (2005) 152–158.

DOI: 10.1016/j.jmatprotec.2004.04.413

Google Scholar

[6] P. Vacher, S. Dumoulin, F. Morestin, S. Mguil-Touchal, Bidimensional strain measurement using digital images, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 213 (1999) 811–817.

DOI: 10.1243/0954406991522428

Google Scholar

[6] M. Vautrot, P. Balland, O. S. Hopperstad, L. Tabourot, J. Raujol-Veillé, F. Toussaint, Experimental technique to characterize the plastic behaviour of metallic materials in a wide range of temperatures and strain rates: Application to a high-carbon steel, Exp. Mech. (2013).

DOI: 10.1007/s11340-013-9839-x

Google Scholar

[7] C. Déprés, M. Fivel, L. Tabourot, A dislocation-based model for low-amplitude fatigue behaviour of face-centred cubic single crystals, Scr. Mater. 58 (2008) 1086–1089.

DOI: 10.1016/j.scriptamat.2008.02.027

Google Scholar