Applications of Multi-Scale Models to Numerical Simulation and Experimental Analysis of Anisotropic Elastoplastic Behavior of Metallic Sheets

Article Preview

Abstract:

In this paper anisotropic mechanical behavior of AA2024 aluminum and Ti6Al4V titanium alloys were studied using three different approaches: unified, multi-mechanism and polycrystalline. The theoretical formulations of studied elastoplastic models are first described. Thereafter, some numerical results concerning the simulation of a uniaxial tension test applied to thin metallic sheets are presented. Comparison between experimental results (taken from the literature) and numerical simulations shows that the multi-mechanism and polycrystalline models describe slightly better the anisotropy when considering all the directions. Finally, numerical simulations of a deep drawing test of AA2024 aluminum thin sheets will be analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

536-544

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jeremy Daniel Seidt, Plastic Deformation and Ductile Fracture of 2024-T351 Aluminum under Various Loading Conditions, Ph.D. Thesis, Graduate School of the Ohio State University (2010).

Google Scholar

[2] G. Gilles, W. Hammami, V. Libertiaux, O. Cazacu, J.H. Yoon, T. Kuwabara, A.M. Habraken, L. Duchêne, Experimental characterization and elasto-plastic modeling of the quasi-static mechanical response of Ti-6Al-4V at room temperature, Int.J. of Sol. and Stru. 48 (2011).

DOI: 10.1016/j.ijsolstr.2011.01.011

Google Scholar

[3] J. Besson, R. Leriche, R. Foerch, G. Cailletaud, Rev. Eur. Elem. Finis 7 (1998) 567–588.

Google Scholar

[4] Ladevèze, P., Nonlinear Computational Structural Mechanics – New Approaches and Non- Incremental Methods of Calculation. Springer, Verlag (1999).

DOI: 10.1007/978-1-4612-1432-8

Google Scholar

[5] R. Hill, A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. London. (1948).

Google Scholar

[6] S. Zhang, H. Francillette, A. Gavrus, Analysis of the anisotropic behavior and the formability aptitude for an AA2024 alloy using the channel die compression test and the simple tension test, Key Engineering Materials. 504-506 (2012) 23-28.

DOI: 10.4028/www.scientific.net/kem.504-506.23

Google Scholar

[7] K. Saï, Multi-mechanism models: Present state and future trends. Int.J. Plast. 27 (2011) 250-281.

DOI: 10.1016/j.ijplas.2010.05.003

Google Scholar

[8] K. Saï, L. Taleb, G. Cailletaud, Numerical simulation of the anisotropic behavior of 2017 aluminum alloy Int. J. Plast. 65 (2012) 48-57.

DOI: 10.1016/j.commatsci.2012.06.035

Google Scholar

[9] Cailletaud G., Pilvin P. Utilisation de modèles polycristallins pour le calcul par éléments finis, Revue Européenne des Eléments Finis. 3 (1994) 515-541.

DOI: 10.1080/12506559.1994.10511147

Google Scholar

[10] G. Cailletaud, K. Saï, A polycrystalline model for the description of ratchetting: Effect of intergranular and intragranular hardening, Materials Science and Engineering. 480 (2008) 24-39.

DOI: 10.1016/j.msea.2007.06.071

Google Scholar