Finite Element Analysis of the Effect of Flexible Pad on the Deformation of Metal Foils in Flexible Pad Laser Shock Microforming

Article Preview

Abstract:

Flexible Pad Laser Shock Forming (FPLSF) is a new microforming process using laser-induced shock pressure and a flexible pad. This process involves high strain-rate (~105 s-1) plastic deformation of metallic foils along with the hyperelastic deformation of the flexible elastomer pad over which the foil is positioned. This paper studies the influence of flexible pad on the shockwave propagation behavior and the plastic deformation of metal foil in FPLSF using finite element analysis. The effect of flexible pad materials such as silicone rubber, polyurethane rubber and natural rubber on the deformation of copper foils has been analysed in detail. An increase in crater depth is observed with the reduction in flexible pad hardness. However, it is found that there exists an optimum hardness of the flexible pad to achieve perfect hemispherical craters on metal foils, as bending of foils at non-deformed region is observed with softer pads whereas flattening of crater surface occurs with harder pads. The effect of flexible pad thickness on the foil deformation was analyzed at six different thickness levels: 300 μm, 600 μm, 900 μm, 1200 μm, 1500 μm, and 2000 μm. Similarly, there exists an optimum flexible pad thickness to maximize the crater depth and achieve the hemispherical shapes. Analysis of flexible pad thickness indicates that the pad thickness influences the elastic recovery of the flexible-pad and hence the plastic deformation of the metallic foils.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

581-588

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Nagarajan, S. Castagne, Z. Wang, Mold-free fabrication of 3D microfeatures using laser-induced shock pressure, Appl. Surf. Sci., 268 (2013) 529-534.

DOI: 10.1016/j.apsusc.2012.12.163

Google Scholar

[2] M. Ramezani, Z.M. Ripin, R. Ahmad, Sheet metal forming with the aid of flexible punch, numerical approach and experimental validation, CIRP J. Manuf. Sci. Technol., 3 (2010) 196-203.

DOI: 10.1016/j.cirpj.2010.11.002

Google Scholar

[3] Y. Liu, L. Hua, J. Lan, X. Wei, Studies of the deformation styles of the rubber-pad forming process used for manufacturing metallic bipolar plates, J. Power Sources, 195 (2010) 8177-8184.

DOI: 10.1016/j.jpowsour.2010.06.078

Google Scholar

[4] Y. Liu, L. Hua, Fabrication of metallic bipolar plate for proton exchange membrane fuel cells by rubber pad forming, J. Power Sources, 195 (2010) 3529-3535.

DOI: 10.1016/j.jpowsour.2009.12.046

Google Scholar

[5] M.H. Dirikolu, E. Akdemir, Computer aided modelling of flexible forming process, J. Mater. Process. Technol. , 148 (2004) 376-381.

DOI: 10.1016/j.jmatprotec.2004.02.049

Google Scholar

[6] X. Wang, D. Du, H. Zhang, Z. Shen, H. Liu, J. Zhou, H. Liu, Y. Hu, C. Gu, Investigation of microscale laser dynamic flexible forming process—simulation and experiments, Int. J. Mach. Tools Manuf. , 67 (2013) 8-17.

DOI: 10.1016/j.ijmachtools.2012.12.003

Google Scholar

[7] H. Watari, H. Ona, Y. Yoshida, Flexible punching method using an elastic tool instead of a metal punch, J. Mater. Process. Technol., 137 (2003) 151-155.

DOI: 10.1016/s0924-0136(02)01080-4

Google Scholar

[8] G. Sala, A numerical and experimental approach to optimise sheet stamping technologies: part II - aluminium alloys rubber-forming, Mater. Des. , 22 (2001) 299-315.

DOI: 10.1016/s0261-3069(00)00088-1

Google Scholar

[9] S.S. Lim, Y.T. Kim, C.G. Kang, Fabrication of aluminum 1050 micro-channel proton exchange membrane fuel cell bipolar plate using rubber-pad-forming process, Int. J. Adv. Manuf. Technol., 65 (2013) 231-238.

DOI: 10.1007/s00170-012-4162-8

Google Scholar

[10] M. Ramezani, Z.M. Ripin, Analysis of deep drawing of sheet metal using the Marform process, Int. J. Adv. Manuf. Technol., 59 (2012) 491-505.

DOI: 10.1007/s00170-011-3513-1

Google Scholar

[11] S. Thiruvarudchelvan, Elastomers in metal forming: A review, J. Mater. Process. Technol., 39 (1993) 55-82.

Google Scholar

[12] R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, Physical study of laser-produced plasma in confined geometry, J. Appl. Phys., 68 (1990) 775-784.

DOI: 10.1063/1.346783

Google Scholar

[13] W. Zhang, Y.L. Yao, Micro Scale Laser Shock Processing of Metallic Components, J. Manuf. Sci. Eng. -Trans. ASME, 124 (2002) 369-378.

DOI: 10.1115/1.1445149

Google Scholar

[14] D. Devaux, R. Fabbro, L. Tollier, E. Bartnicki, Generation of shock waves by laser-induced plasma in confined geometry, J. Appl. Phys., 74 (1993) 2268-2273.

DOI: 10.1063/1.354710

Google Scholar

[15] G.R. Johnson, Cook, W. H., A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the International Symposium on Ballastics, (1983) 541-547.

Google Scholar

[16] R. Fabbro, P. Peyre, L. Berthe, X. Scherpereel, Physics and applications of laser-shock processing, J. Laser Appl. , 10 (1998) 265-279.

DOI: 10.2351/1.521861

Google Scholar