[1]
E.H. Tulinski, Mass finishing, in: ASM, Metals Handbook vol. 5. Surface Engineering, 9th edn., ASM International, Materials Park, 1994, pp.261-277.
Google Scholar
[2]
E.J. Abbot, F.A. Firestone, Specifying surface quality, Mech. Eng. 55 (1933) 569.
Google Scholar
[3]
ISO 13565/3Geometrical product specifications (GPS) – Surface texture: Profile method; Surfaces having stratified functional properties - Part 3: Height characterization using the material probability curve, (1998), Technical report.
DOI: 10.3403/02108322u
Google Scholar
[4]
I.B. Corral, J.V. Calvet, M.C. Salcedo, Use of roughness probability parameters to quantify the material removed in plateau honing, Int. J. Mach. Tool Manuf. 50 (2010) 621-629.
DOI: 10.1016/j.ijmachtools.2010.02.007
Google Scholar
[5]
M. Bigerelle, A. Iost, A numerical method to calculate the Abbott parameters: A wear application, Tribol. Int. 40 (2007) 1319-1334.
DOI: 10.1016/j.triboint.2006.12.007
Google Scholar
[6]
R. Kumar, S. Kumar, B. Prakash, A. Sethuramiah, Assessment of engine liner wear from bearing area curves, Wear 239 (2000) 282-286.
DOI: 10.1016/s0043-1648(00)00331-8
Google Scholar
[7]
A. Boschetto, L. Bottini, F. Veniali, Microremoval modeling of surface roughness in barrel finishing, Int. J. Adv. Manuf. Technol. 69( 9-12) (2013) 2343-2354.
DOI: 10.1007/s00170-013-5186-4
Google Scholar
[8]
H. Henein, J.K. Brimacombe, A.P. Watkinson, The modelling of transverse solids motion in rotary kilns, Metall. Trans. B 14B (1983) 207-220.
DOI: 10.1007/bf02661017
Google Scholar
[9]
J. Mellmann, The transverse motion of solids in rotating cylinders - Forms of motion and transition behavior, Powder. Technol. 118 (2001) 251-270.
DOI: 10.1016/s0032-5910(00)00402-2
Google Scholar
[10]
A.A. Boateng, Boundary layer modeling of granular flow in the transverse plane of a partially filled rotating cylinder. Int. J. Multiph. Flow. 24(3) (1998) 499-521.
DOI: 10.1016/s0301-9322(97)00065-7
Google Scholar
[11]
A. Boschetto, F. Veniali, Workpiece and media tracking in barrel finishing, Int. J. Mach. Mach. Mater. 6(3–4) (2009) 305-321.
DOI: 10.1504/ijmmm.2009.027330
Google Scholar
[12]
D. A. Davidson, Mass finishing processes, Met. Finish. 99(1)(2001) 110-124.
Google Scholar
[13]
K. R. Olsen, Choosing the right finishing equipment: Combining customer input and vendor analysis leads to trouble-free production of metal parts, Met. Finish. 104(5) (2006) 19-23.
Google Scholar
[14]
A. Boschetto, L. Bottini, F. Monarca, F. Veniali, Barrel finishing of FDM parts, in: Enhancing the Science of Manufacturing proceedings of the XI A.I. Te.M. Conference San Benedetto del Tronto, 2013, pp.29-40.
Google Scholar
[15]
T. Wohlers, Wohlers Report 2012: Executive Summary, Wohlers Associates Inc., Fort Collins, (2012).
Google Scholar
[16]
N. Hopkinson, R. Hague, P. Dickens, Rapid Manufacturing An Industrial Revolution for the Digital Age, John Wiley & Sons, Chichester, (2005).
DOI: 10.1002/0470033991
Google Scholar
[17]
K.C. Cooper, Rapid Prototyping Technology. Selection and Applications, Marcel Drekker, Inc., New York, (2001).
Google Scholar
[18]
A. Boschetto, V. Giordano, F. Veniali, 3D roughness profile model in fused deposition modelling, Rapid Prototyp. J. 19(4) (2013) 240-252.
DOI: 10.1108/13552541311323254
Google Scholar
[19]
K. Thrimurthulu, P.M. Pandey, N.V. Reddy, Optimum part deposition orientation in fused deposition modeling, Inter. J. Mach. Tools Manuf. 44(6) 585-594.
DOI: 10.1016/j.ijmachtools.2003.12.004
Google Scholar
[20]
A. Boschetto, V. Giordano, F. Veniali, Modelling micro geometrical profile in fused deposition process, Int. J. Adv. Manuf. Technol. 61(9-12) (2011) 945-956.
DOI: 10.1007/s00170-011-3744-1
Google Scholar
[21]
C. K Chua, K. F Leong, C.S. Lim, Rapid prototyping: principles and applications, N.J. World Scientific, River Edge, (2010).
Google Scholar
[22]
P. M Pandey, N.V. Reddy, S.G. Dhande, Improvement of surface finish by staircase machining in fused deposition modelling, Int. J. Mater. Process. Technol. 1(1-3)(2003) 323-331.
DOI: 10.1016/s0924-0136(02)00953-6
Google Scholar
[23]
K.F. Leong, C.K. Chua, G.S. Chua, C.H. Tan, Abrasive Jet Deburring of Jewellery Models Built by Stereolithography Apparatus, Int. J. Mater. Process. Technol. 83(1-3)(1998) 36-47.
DOI: 10.1016/s0924-0136(98)00041-7
Google Scholar
[24]
L.M. Galantucci, F. Lavecchia, G. Percoco, Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling, CIRP Annals - Manufacturing Technology 59(1)(2010) 247-250.
DOI: 10.1016/j.cirp.2010.03.074
Google Scholar
[25]
D. J. Whitehouse, Handbook Of Surface And Nanometrology, CRC Press, New York, (2011).
Google Scholar
[26]
A. Boschetto, M. Bordoni, Thickening of surfaces for direct additive manufacturing fabrication, Rapid Prototyp. J. 18(4)(2012) 308-318.
DOI: 10.1108/13552541211231734
Google Scholar
[27]
ISO/DTS 16610-22 Geometrical Product Specifications (GPS) - Filtration - Linear profile filters: Spline filters, International Organization for Standardization (ISO), Geneva, (2006).
DOI: 10.3403/30429462u
Google Scholar