[1]
D. Bechert, M. Bruse, W. Hage, J. van der Hoeven, G. Hoppe, Experiments on drag-reducing surfaces and their optimization with an adjustable geometry, Journal of Fluid Mechanics 338 (1997) 59-87.
DOI: 10.1017/s0022112096004673
Google Scholar
[2]
B. Dean, B. Bhushan, The effect of riblets in rectangular duct flow, Applied Surface Science 258 (2012) 3936-3947.
DOI: 10.1016/j.apsusc.2011.12.067
Google Scholar
[3]
M. Walsh, Riblets as a Viscous Reduction Technique, American Institute of Aeronautics and Astronautics 21 (1983) 485-486.
Google Scholar
[4]
H. Choi, P. Moin, J. Kim, Direct numerical simulation of turbulent flow over riblets, Journal of Fluid Mechanics 255 (1993) 503-539.
DOI: 10.1017/s0022112093002575
Google Scholar
[5]
D. Bechert, M. Bruse, W. Hage, R. Meyer, Fluid Mechanics of Biological Surfaces and their Technological Application, Naturwissenschaften 87 (2000) 157-171.
DOI: 10.1007/s001140050696
Google Scholar
[6]
J. Reneaux, Overview on Drag Recuction Technologies for Civil Transport Aircraft, European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, (2004).
Google Scholar
[7]
M. Thome, G. Hirt, Economical and Ecological Benefits of Process-integrated Surface Structuring, Key Engineering Materials 344 (2007) 939-946.
DOI: 10.4028/www.scientific.net/kem.344.939
Google Scholar
[8]
G. Hirt, M. Thome, Large area rolling of functional metallic micro structures, Production Engineering Research Development 1 (2007) 351-356.
DOI: 10.1007/s11740-007-0067-z
Google Scholar
[9]
G. Hirt, M. Thome, Rolling of functional metallic surface structures, CIRP Annals - Manufacturing Technology 57 (2008) 317-320.
DOI: 10.1016/j.cirp.2008.03.034
Google Scholar
[10]
T. Romans, M. Thome, G. Hirt, Riblet Rolling - Texturing large-area aluminium sheets with riblets, International Aluminium Journal (2009) 54-56.
Google Scholar
[11]
T. Romans, M. Thome, S. Klumpp, G. Hirt, Walzen feiner Riblet-Oberflächen zur Reduktion von Strömungswiderständen, 25. Aachener Stahlkolloquium, Aachen, 2010, pp.89-98.
Google Scholar
[12]
B. Denkena, M. Reichstein, B. Wang, Manufacturing of Microfunctional Structures by Grinding, Production Engineering 13/1 (2006) 31-34.
Google Scholar
[13]
F. Klocke, B. Feldhaus, G. Hirt, M. Thome, S. Klum, Development of Two Innovative Rolling Processes for the Production of Defined Riblet Structures in Consideration of Common Fluid Dynamic Requirements, 2nd International Conference on New Forming Technology, Bremen, 2007, pp.185-194.
Google Scholar
[14]
W. Hage, K. Knobloch, R. Meyer, Riblet Structures on Compressor Blades of Axial Turbomachines, European Drag Reduction and Flow Control Meeting, Ischia, (2006).
Google Scholar
[15]
T. Romans, G. Hirt, An analytic, numerical and experimental evaluation of the riblet rolling process, 10th International Conference on Technology of Plasticity, Aachen, (2011).
Google Scholar
[16]
M. Thome, Umformtechnische Herstellung funktionaler flächiger Mikrostrukturen in metallischen Werkstoffen, in: Umformtechnische Schriften, Shaker Verlag, Aachen, (2009).
Google Scholar
[17]
J. Schijve, F. Jacobs, Fatigue tests on unnotched and notched specimens of 2024-T3 Alclad, 2048-T8 Alclad and 7178-T6 extruded material, Report TR 68017 Nat. Aerospace Laboratory, (1968).
Google Scholar
[18]
P. Edwards, M. Earl, A. Britain, A comparative study of the fatigue performance of notched specimens of clad and unclad aluminium alloy, with and without pre-stress, C.P. No. 1361, Aeron. Res. Council, London, (1977).
Google Scholar
[19]
A. Merati, A study of nucleation and fatigue behavior of an aerospace aluminium alloy 2024-T3, Int. J. Fatigue 27 (2005) 33-44.
DOI: 10.1016/j.ijfatigue.2004.06.010
Google Scholar
[20]
S. Stille, J. Pöplau, T. Beck, M. Bambach, G. Hirt, Very high cycle fatigue behavior of riblet structured Alclad 2024 thin sheets, Int. J. Fatigue 63 (2014) 183-190.
DOI: 10.1016/j.ijfatigue.2014.01.023
Google Scholar