Cold Forging with Lubricated Tools

Article Preview

Abstract:

Cold forging processes require high-capability tribological systems in order to ensure sound forming results. Due to a rising ecological awareness, alternatives to the established and reliable conversion coatings are necessary. Single bath systems like polymers and salt wax coatings with integrated lubrication appear to be the most promising approach to prevent galling. For an optimization and investigation of the tribological system a definition of the tribological loads is necessary. However, only insufficient values are available in literature. Especially, long sliding distances, which occur in multistage operations, can cause a breakdown of the lubricant. Therefore, approaches are necessary to enable long sliding distances. This paper presents the results obtained with a cold forging tribometer, the Sliding Compression Test, which reveal the high impact of remaining lubricant on the friction coefficient. Also, tests with prelubricated tools show the ability to reduce the friction and the results of investigations with rough tool surfaces are presented.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

971-980

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Altan, G. Ngaile, G.S. Shen, Cold and Hot Forging, ASM International, Materials Park, Ohio, (2004).

Google Scholar

[2] S. Stupkiewicz, M. Zenon, Phenomenological model of real contact area evolution with account for bulk plastic deformation in metal forming, International Journal of Plasticity. 19/3 (2003) 323–344.

DOI: 10.1016/s0749-6419(01)00037-7

Google Scholar

[3] C. Müller, M. Keller, P. Groche, Independent Investigation of the Contact Normal Stress and the Surface Enlargement with the Sliding Compression Test, Proceedings of the 16th International Conference on Advances in Material & Processing. (2013).

Google Scholar

[4] N. Bay, The state of the art in cold forging lubrication, Journal of Materials Processing Technology. 46 (1994) 19–40.

DOI: 10.1016/0924-0136(94)90100-7

Google Scholar

[5] K. Lange, M. Kammerer, K. Pöhlandt, J. Schöck, Fließpressen, Springer, Berlin, Heidelberg, 2008. In German.

DOI: 10.1007/978-3-540-30910-9

Google Scholar

[6] N. Bay, A. Azushima, P. Groche, I. Ishibashi, M. Merklein, M. Morishita et al., Environmentally benign tribo-systems for metal forming, Annals of CIRP. 59 (2010) 760–780.

DOI: 10.1016/j.cirp.2010.05.007

Google Scholar

[7] T. Steenberg, J.S. Olsen, E. Christensen, N.J. Bjerrum, Estimation of temperature in the lubricant film during cold forging of stainless steel based on studies of phase transformations in the film, Wear. 232 (1999) 140–144.

DOI: 10.1016/s0043-1648(99)00137-4

Google Scholar

[8] J.W. Raedt, Grundlagen für das schmiermittelreduzierte Tribosystem bei der Kaltumformung des Einsatzstahles 16MnCr5, Aachen, 2002. In German.

Google Scholar

[9] N. Bay, M. Eriksen, X. Tan, O. Wibom, A friction model for cold forging aluminium, steel ans stainless steel provided with conversion coating and solid film lubricant, Annals of CIRP. (2011).

DOI: 10.1016/j.cirp.2011.03.143

Google Scholar

[10] P. Groche, C. Müller, J. Stahlmann, S. Zang, Mechanical Conditions in Bulk Metal Forming Tribometers - Part One, Tribology International. 62 (2013) 223–231.

DOI: 10.1016/j.triboint.2012.12.008

Google Scholar

[11] M. Rupp, D. Hemyari, Saubere Massivumformung, Tagungsband Umformtechnisches Kolloquium Darmstadt. (1997). In German.

Google Scholar

[12] Z.M. Hu, T.A. Dean, A study of surface topography, friction and lubricants in metalforming, International Journal of Machine Tools and Manufacture. 40 (2000) 1637–1649.

DOI: 10.1016/s0890-6955(00)00014-6

Google Scholar

[13] K.D. Nittel, Schmierstoffe für die Kaltmassivumformung, Tribologie + Schmierungstechnik. 5/2009 (2009) 37–41. In German.

Google Scholar

[14] J. Donofrio, Zinc phosphating, Metal Finishing. 97-5 (1999) 71–86.

DOI: 10.1016/s0026-0576(99)80761-2

Google Scholar

[15] J. Nyamangara, Use of sequential extraction to evaluate zinc and copper in a soil amended with sewage sludge and inorganic metal salts, Agriculture, Ecosystems & Environment. 69-2 (1998) 135–141.

DOI: 10.1016/s0167-8809(98)00101-7

Google Scholar

[16] C.J. Baldy, Recycling zinc phosphate sludge, Metal Finishing. 94-11 (1996) 23–24.

DOI: 10.1016/0026-0576(96)83952-3

Google Scholar

[17] P.T. Olesen, T. Steenberg, E. Christensen, N.J. Bjerrum, Electrolytic deposition of amorphous and crystalline zinc–calcium phosphates, Journal of Materials Science. 33 (1998) 3059–3063.

DOI: 10.1023/a:1004379319348

Google Scholar

[18] E. Ceron, N. Bay, M. Arentoft, P.T. Tang, Testing a New Microporous Lubricant Carrier for Cold Forging, Steel Research International. Special Edition (2011) 240–244.

Google Scholar

[19] J. Schoppe, Innovative cold massive forming on phosphate-free semi-finished products, Proceedings of New Developments in Forging Technology. (2013) 327–334.

Google Scholar

[20] K.D. Nittel, B. Bucci, R. Hellwig, J. Schoppe, J. Ostrowski, P. Zwez et al., Surface Treatment - Facts, Trends and Outlook for the Cold Forging Industry, Proceedings of ICFG Plenary Meeting. (2010) 142–152.

Google Scholar

[21] P. Groche, J. Stahlmann, C. Müller, Mechanical Conditions in Bulk Metal Forming Tribometers - Part Two, Tribology International. 66 (2013) 345–351.

DOI: 10.1016/j.triboint.2012.11.028

Google Scholar

[22] C. Müller, P. Groche, Tribological measurement in cold forging, Proceedings of the 19th International Colloquium Tribology. (2014). In Press.

Google Scholar

[23] P. Groche, J. Stahlmann, J. Hartel, M. Köhler, Hydrodynamic Effects of Macroscopic Deterministic Surface Structures in Cold Forging Processes, Tribology International. 42 (2009) 1173–1179.

DOI: 10.1016/j.triboint.2009.03.019

Google Scholar

[24] M. Köhler, J. Stahlmann, P. Groche, Effect of structured workpiece surfaces on friction in bulk metal forming, Proceedings of ICTMP. (2007) 24–26.

Google Scholar

[25] P. Groche, C. Müller, S. Zang, Veränderung der Oberfläche bei der Umformung, wt Werkstatttechnik online. 103 (2013) 939–945. In German.

DOI: 10.37544/1436-4980-2013-11-12-939

Google Scholar

[26] J. Stahlmann, E.R. Nicodemus, S.C. Sharma, P. Groche, Surface Roughness Evolution in FEA Simulations of Bulk Metal Forming Process, Wear. 288 (2012) 78–87.

DOI: 10.1016/j.wear.2012.02.005

Google Scholar

[27] S. Zang, P. Groche, Geschwindigkeitseinfluss auf die Tribologie der Kaltmassivumformung, Schmiede Journal. September (2013) 28–31. In German.

Google Scholar

[28] S. Zang, C. Müller, P. Groche, Untersuchung des Einflusses der Relativgeschwindigkeit auf tribologische Systeme der Kaltmassivumformung, Tagungsband zur Tribologie-Fachtagung. (2013) 22/1. In German.

Google Scholar

[29] J. Ostrowski, F. Hoffmeister, H. Falz, Phosphatfreie Drahtbeschichtung: Eine umweltverträglicher Ansatz für die moderne Drahtbeschichtung, Tagungsband Jahrestreffen der Kaltmassivumformer. (2013). In German.

Google Scholar

[30] C. Müller, A. Jahn, P. Groche, Lubrication of Cold Forging Tools with Single Layer Lubricants, Proceedings of ICFG Plenary Meeting. 46 (2013).

Google Scholar

[31] U. Popp, U. Engel, M. Geiger, Increasing Tool Life in Cold Forging by Laser micro texturing the Tool Surface, Proceedings of the International Conference THE, Coatings in Manufacturing Engineering. 3 (2002) 17–26.

DOI: 10.1016/s0007-8506(07)61506-6

Google Scholar

[32] M. Geiger, U. Popp, U. Engel, Tool Life Improvement by Surface Laser Texturing, Proceedings of the International Conference THE, Coatings in Manufacturing Engineering. 4 (2004) 57–68.

Google Scholar

[33] K. Wagner, A. Putz, U. Engel, Improvement of tool life in cold forging by locally optimized surfaces, Journal of Materials Processing Technology. 177 (2006) 206–209.

DOI: 10.1016/j.jmatprotec.2006.03.229

Google Scholar