Material Defects in Ceramic Crowns Identification by Optical Coherence Tomography and MicroCT

Article Preview

Abstract:

Full ceramic crowns are considered revolutionary in developing the concept of aesthetic dentistry. Appreciate their aesthetic appearance particularly raise the cost prices, they do not ensure the risk of fractures and cracks which sometimes face the clinician after their insertion directly into the mouth. As a result of the fracture may occur between disputes team dentist-dental technician. The purpose of this study was to identify flaws of material included in the pottery table analyzing the full ceramic crowns using non-invasive technologies. As materials we use 25 full ceramic crowns (e. max, IVOCLAR) obtained through the technology of pressing were used for this study. Non-invasive methods used for this study were OCT and Micro CT. The OCT technology works in Time Domain, at 1300 nm and scan angle at 18 degrees, and for each sample scans were carried out in areas of maximum voltage. After the scans, we have been obtained through the stack of 500 slicers at a distance of 10 microns each other. A number of 17 samples of the total samples obtained exhibited defects in areas of major stress corresponding to the crown considered. As a result of defects discovered using the technology OCT it has considered necessary for validation them by employing the Micro CT technology. In conclusion, we consider that OCT technology can be considered an early diagnosis method of faults contained in the table structure of the ceramic crowns before inserting them in the oral cavity, by reducing the risks of a prosthetic treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-133

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] McLaren EA, Cao PT. Ceramics in dentistry—part I: classes of materials. Inside Dentistry. (2009); 5(9): 94-105.

Google Scholar

[2] Taylor JA. History of Dentistry: A Practical Treatise for the Use of Dental Students and Practitioners. New York, NY: Lea and Febiger; (1922): 142-156.

Google Scholar

[3] Kelly JR. Dental ceramics: what is this stuff anyway? J Am Dent Assoc. (2008); 139(suppl): S4-S7.

Google Scholar

[4] Anusavice KJ. Phillips' Science of Dental Materials. 10th ed. Philadelphia, PA: WB Saunders; (1996).

Google Scholar

[5] Powers JM, Sakaguichi RL. Craig's Restorative Dental Materials. 12th ed. St. Louis, MO: Mosby Elsevier; (2006): 445.

Google Scholar

[6] Denry I, Holloway JA. Ceramics for dental applications: a review. Materials. (2010); 3(1): 351-368.

Google Scholar

[7] Powers JM, Sakaguichi RL. Craig's Restorative Dental Materials. 12th ed. St. Louis, MO: Mosby Elsevier; (2006): 454.

Google Scholar

[8] Helvey GA. A history of dental ceramics. Compend Contin Educ Dent. (2010); 31(4): 1-3.

Google Scholar

[9] Luthardt RG, Sandkuhl O, Herold V, Walter MH. Accuracy of mechanical digitizing with a CAD/CAM system for fixed restorations. Int J Prosthodont. (2001); 14(2): 146-151.

Google Scholar

[10] Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J. (2008); 204(9): 505-511.

DOI: 10.1038/sj.bdj.2008.350

Google Scholar

[11] Silva NR, Witek L, Coelho PG, et al. Additive CAD/CAM process for dental prostheses. J Prosthodont. (2011); 20(2): 93-96.

DOI: 10.1111/j.1532-849x.2010.00623.x

Google Scholar

[12] Helvey GA. Chairside CAD/CAM: lithium disilicate restoration for anterior teeth made simple. Inside Dentistry. (2009); 5(10); 58-67.

Google Scholar

[13] Leinfelder KL. Porcelain esthetics for the 21st century. J Am Dent Assoc. (2000); 131(suppl 1): S47-S51.

Google Scholar

[14] Martinez Rus F, Pradies Ramiro G, Suarez Garcia MaJ, Rivera Gomez B. Dental ceramics: classification and selection criteria. RCOE. (2007); 12(4): 253-263.

Google Scholar

[15] Cesar PF, Gonzaga CC, Miranda Júnior WG, Okada CY. Correlation between fracture toughness and leucite content in dental porcelains. J Dent. (2005); 33(9): 721-729.

DOI: 10.1016/j.jdent.2005.02.001

Google Scholar

[16] Probster L, Geis-Gerstorfer J, Kirchner E, Kanjantra P. In vitro evaluation of a glass-ceramic restorative material. J Oral Rehabil. (1997); 24(9): 636-645.

DOI: 10.1046/j.1365-2842.1997.00560.x

Google Scholar

[17] McLean J. The Science and Art of Dental Ceramics. Chicago, IL: Quintessence Publishing Co Inc; (1979).

Google Scholar

[18] Ohyama T, Yoshinari M, Oda Y. Effects of cyclic loading on the strength of all-ceramic materials. Int J Prosthodont. (1999); 12(1): 28-37.

Google Scholar

[19] Sorensen JA, Choi C, Fanuscu MI, Mito WT. IPS Empress crown system: three-year clinical trial results. J Calif Dent Assoc. (1998); 26(2): 130-136.

DOI: 10.1080/19424396.1998.12221650

Google Scholar

[20] Dong JK, Luthy H, Wohlwend A, Scharer P. Heat-pressed ceramics: technology and strength. Int J Prosthodont. (1992); 5(1): 9-16.

Google Scholar

[21] Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent. (1996); 75(1): 18-32.

DOI: 10.1016/s0022-3913(96)90413-8

Google Scholar

[22] McLean JW. Evolution of dental ceramics in the twentieth century. J Prosthet Dent. (2001); 85(1): 61-66.

Google Scholar

[23] Sherrill CA, O'Brien WJ. Transverse strength of aluminous and feldspathic porcelain. J Dent Res. (1974); 53: 683-690.

DOI: 10.1177/00220345740530032801

Google Scholar

[24] Chaiyabutr Y, Giordano R, Pober R. The effect of different powder particle size on mechanical properties of sintered alumina, resin- and glass-infused alumina. J Biomed Mater Res B Appl Biomater. (2009); 88(2): 502-508.

DOI: 10.1002/jbm.b.31261

Google Scholar

[25] Balakrishna P, Murty BN, Anuradha M. A new process based agglomeration parameter to characterize ceramic powders. Journal of Nuclear Materials. (2009); 384: 190-193.

DOI: 10.1016/j.jnucmat.2008.11.002

Google Scholar

[26] Della Bona A, Mecholsky JJ Jr, Anusavice KJ. Fracture behavior of Lithia disilicate and leucite based ceramics. Dent Mater. (2004); 20(10): 956-962.

DOI: 10.1016/j.dental.2004.02.004

Google Scholar

[27] Shenoy A, Shenoy N. Dental ceramics: an update. J Conserv Dent. (2010); 13(4): 195-203.

DOI: 10.4103/0972-0707.73379

Google Scholar

[28] Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. (1999); 20(1): 1-25.

DOI: 10.1016/s0142-9612(98)00010-6

Google Scholar

[29] Duran P, Moure C. Sintering at near theoretical density and properties of PZT ceramics chemically prepared. J Mater Sci. (1985); 20(3): 827-833.

DOI: 10.1007/bf00585722

Google Scholar

[30] Helvey GA. Zirconia and computer-aided design/computer-aided manufacturing (CAD/CAM) dentistry. Inside Dentistry. (2008); 4(4): 72-79.

DOI: 10.1016/b978-0-323-09176-3.00032-2

Google Scholar

[31] Christel P, Meunier A, Heller M, et al. Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J Biomed Mater Res. (1989); 23(1): 45-61.

DOI: 10.1002/jbm.820230105

Google Scholar

[32] Raigrodski AJ. Contemporary all-ceramic fixed partial dentures: a review. Dent Clin North Am. (2004); 48(2): 531-544.

DOI: 10.1016/j.cden.2003.12.008

Google Scholar

[33] Hauptmann H, Suttor D, Frank S, Hoescheler H. Material properties of all-ceramic zirconia prosthesis [abstract]. J Dent Res. (2000); 79(suppl 1): S507.

Google Scholar

[34] Roundtree P, Nothdurft F, Pospiech P. In-vitro investigations on the fracture strength of all-ceramic bridges of ZrO2-ceramic [abstract]. J Dent Res. (2001); 80: 57.

Google Scholar

[35] Brodbelt RH, O'Brien WJ, Fan PL, et al. Translucency of human dental enamel. J Dent Res. (1981); 60(10): 1749-1753.

DOI: 10.1177/00220345810600100401

Google Scholar

[36] Seghi RR, Johnston WM, O'Brien WJ. Spectrophotometric analysis of color differences between porcelain systems. J Prosthet Dent. (1986); 56(1): 35-40.

DOI: 10.1016/0022-3913(86)90279-9

Google Scholar

[37] Brodbelt RH, O'Brien WJ, Fan PL. Translucency of dental porcelains. J Dent Res. (1980); 59(1): 70-75.

DOI: 10.1177/00220345800590011101

Google Scholar

[38] Chu F, Chow TW, Chai J. Contrast ratios and masking ability of three types of ceramic veneers. J Prosthet Dent. (2007); 98(5): 359-364.

DOI: 10.1016/s0022-3913(07)60120-6

Google Scholar

[39] Ozturk O, Uludag B, Usumez A, et al. The effect of ceramic thickness and number of firings on the color of two all-ceramic systems. J Prosthet Dent. (2008); 100(2): 99-106.

DOI: 10.1016/s0022-3913(08)60156-0

Google Scholar

[40] Barath VS, Faber FJ, Westland S, Niedermeier W. Spectrophotometric analysis of all-ceramic materials and their interaction with luting agents and different backgrounds. Adv Dent Res. (2003); 17: 55-60.

DOI: 10.1177/154407370301700113

Google Scholar

[41] Yu B, Lee YK. Color difference of all-ceramic materials by the change of illuminants. Am J Dent. (2009); 22(2): 73-78.

Google Scholar

[42] Johnston WM, Ma T, Kienle BH. Translucency parameter of colorants for maxillofacial prostheses. Int J Prosthodont. (1995); 8(1): 79-86.

Google Scholar

[43] Liu MC, Aquilino SA, Lund PS, et al. Human perception of dental porcelain translucency correlated to spectrophotometric measurements. J Prosthodont. (2010); 19(3): 187-193.

DOI: 10.1111/j.1532-849x.2009.00542.x

Google Scholar

[44] Heffernan MJ, Aquilino SA, Diaz-Arnold AM, et al. Relative translucency of six all-ceramic systems. Part I: core materials. J Prosthet Dent. (2002); 88(1): 4-9.

DOI: 10.1067/mpr.2002.126794

Google Scholar

[45] Barizon KTL. Relative Translucency of Ceramic Systems for Porcelain Veneers. [master's thesis]. Iowa City, IA: University of Iowa; (2011).

DOI: 10.17077/etd.rmuujxij

Google Scholar

[46] Hertzberg RW. Deformation and Fracture Mechanics of Engineering Materials. 4th ed. Hoboken, NJ: Wiley; (1995).

Google Scholar

[47] Piwowarczyk A, Ottl P, Lauer HC, Kuretzky T. A clinical report and overview of scientific studies and clinical procedures conducted on 3M ESPE Lava All-Ceramic System. J Prosthodont. (2005); 14(1): 39-45.

DOI: 10.1111/j.1532-849x.2005.00003.x

Google Scholar