Hydrolytic Degradation of Dental Composites

Article Preview

Abstract:

This study evaluated the hydrolytic degradation of two experimental (C1, C2) and two commercial composite (Tetric EvoCeram and Premise) prepared to be used in dental restorations. Two experimental composites and two commercial composites were undergoing hydrolytic degradation in three different medium: distilled water, artificial saliva and alcoholic solution (50/50). The samples were investigated immediately after polymerisation with halogen lamp Optilux 501 and after 33 days of immersion in all three medium, using Fourier transforms infrared analysis (FTIR). FT-IR spectra of samples from the same composite immersed in distilled water, artificial saliva and alcoholic solution, revealed mostly reducing the intensity of the characteristic peaks of Si-O-Si bond less Tetric composite immersed in artificial saliva, which peak intensity remains unchanged.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-117

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.J. Söderholm, M. Zigan, M. Ragan, W. Fischlschweiger, M. Bergman, Hydrolytic degradation of dental composites, J Dent. Res. 63, 10 (1984), 1248-1254.

DOI: 10.1177/00220345840630101701

Google Scholar

[2] N. Moszner, S. Klapdohr, Nanotechnology for dental composites, International Journal of Nanotechnology, 1 (2004), 143-148.

Google Scholar

[3] J. Martos, P.W. Rodo Osinaga, E. de Oliveira, L. A. Suita de Castro, Hydrolytic degradation of composite resins: effects on the microhardness, Materials Research, 6 (2003), 599-604.

DOI: 10.1590/s1516-14392003000400029

Google Scholar

[4] C. Tamas, M. Moldovan, C. Prejmerean, A. Colceriu, G. Furtos, L. Vezsenyi, D. Prodan, V. Simon, Structure and properties of inorganic fillers for dental composites, Journal of Optoelectronics and Advanced Materials, 6 (2005), 2849-2852.

DOI: 10.1016/j.msec.2005.01.016

Google Scholar

[5] K. Langer, M. Raith, Infrared spectra of Al-Fe(III)-epidotes and zoisites, Ca2(Al1-pFe3+p)Al2O(OH)[Si2O7][SiO4], American Mineralogist, 59 (1974), 1249 – 1258.

Google Scholar

[6] J.L. Ferracane, H.X. Berge, J.R. Condon, In vitro aging of dental composites in water—Effect of degree of conversion, filler volume, and filler/matrix coupling, J. Biomed. Mater. Res. 42 (1998), 465-472.

DOI: 10.1002/(sici)1097-4636(19981205)42:3<465::aid-jbm17>3.0.co;2-f

Google Scholar

[7] A. F. Bettencourta, C.B. Nevesb, M. S. de Almeidab, L.M. Pinheiroa, S. Arantes e Oliveirab, L. P. Lopesb, M.F. Castroa, Biodegradation of acrylic based resins, Dental Materials, 26 (2010), e171–e180.

Google Scholar

[8] S. Rüttermann, I. Dluzhevskaya, C. Großsteinbeck, H. Wolfgang, M. Raab, R. Janda, Impact of replacing Bis-GMA and TEGDMA by other commercially available monomers on the properties of resin-based composites, Dental materials, 26 (2010), 353 – 359.

DOI: 10.1016/j.dental.2009.12.006

Google Scholar

[9] I.D. Sideridou, M.M. Karabela, E. Ch. Vouvoudi, Physical properties of current dental nanohybrid and nanofill light-cured resin composites, Dental Materials, 27(2011), 598–607.

DOI: 10.1016/j.dental.2011.02.015

Google Scholar

[10] N. da Rocha Svizeroa, V. de Freitas Carvalhoa, J. Bechtoldb, R. C. Bruschi Alonsoc, M. T. Attad, P. H. Perlatti D'Alpinoc, Hydrolytic degradation of a resin composite as a function of the curing tip distance and aging, Materials Research. 14 (2011).

Google Scholar

[11] F. Monticelli, R. Osorio, M. Toledano, F. R. Tay, M. Ferrari, In vitro hydrolytic degradation of composite quartz fiber-post bonds created by hydrophilic silane couplings, Operative Dentistry, 31-6 (2006), 728-733.

DOI: 10.2341/05-151

Google Scholar

[12] C. Domingoa, R.W. Arcı´sa, E. Osoriob, R. Osoriob, M.A. Fanovicha, R. Rodrı´guez-Clementea, M. Toledanob, Hydrolytic stability of experimental hydroxyapatite-filled dental composite materials, Dental Materials, 19 (2003), 478–486.

DOI: 10.1016/s0109-5641(02)00093-3

Google Scholar

[13] J.L. Ferracane, Hygroscopic and hydrolytic effects in dental polymer networks, Dental Materials, 22(2006), 211-222.

DOI: 10.1016/j.dental.2005.05.005

Google Scholar