Highly (004)-Oriented Texture of γ-LiAlO2 Films by Laser Chemical Vapor Deposition

Article Preview

Abstract:

(004)-oriented γ-LiAlO2 films were prepared on poly-crystalline AlN substrates by laser chemical vapor deposition at deposition temperature (Tdep) of 1100–1250 K, molar ratio of Li/Al (RLi/Al) of 1.0–10 and low total pressure (Ptot) of 100–200 Pa. The (004)-oriented γ-LiAlO2 films consisted of pyramidal grains with a columnar structure. The deposition rate of (004)-oriented γ-LiAlO2 films reached to 65–72 μm h-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-144

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.M.C. Chou, H.C. Huang, Y.F. Chang, Appl. Phys. Lett. 88 (2006).

Google Scholar

[2] X. He, G. Meng, X. Zhu, M. Kong, Nano Res. 2 (2009) 321-326.

Google Scholar

[3] C.-H. Hsieh, I. Lo, M.-H. Gau, Y.-L. Chen, M.-C. Chou, W.-Y. Pang, Y.-I. Chang, Y.-C. Hsu, M.-W. Sham, J.-C. Chiang, J.-K. Tsai, Jpn. J. Appl. Phys. 47 (2008) 891-895.

DOI: 10.1143/jjap.47.891

Google Scholar

[4] M.M.C. Chou, D.R. Hang, C. Chen, C.-A. Li, J.-W. Lu, C.-Y. Lee, J.-D. Tsay, C.W.C. Hsu, C. Liu, phys. status solidi (c) 7 (2010) 1764-1766.

Google Scholar

[5] A.N. Webb, J.W.B. Mather, R.M. Suggitt, J. Electrochem. Soc. 112 (1965) 1059-1063.

Google Scholar

[6] H.J. Choi, J.J. Lee, S.H. Hyun, H.C. Lim, Fuel Cells 9 (2009) 605-612.

Google Scholar

[7] L. Suski, M. Tarniowy, J. Mater. Sci. 36 (2001) 5119-5124.

Google Scholar

[8] K. Kinoshita, G.H. Kucera, J. Electrochem. Soc. 129 (1982) 216-220.

Google Scholar

[9] A.V. Sotnikov, H. Schmidt, M. Weihnacht, E.P. Smirnova, T.Y. Chemekova, Y.N. Makarov, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 (2010) 808-811.

DOI: 10.1109/tuffc.2010.1485

Google Scholar

[10] Y. Takagaki, E. Chilla, K.H. Ploog, J. Appl. Phys. 97 (2005) 034902.

Google Scholar

[11] J. Lin, Z. Wen, X. Xu, N. Li, S. Song, Fusion Eng. Des. 85 (2010) 1162-1166.

Google Scholar

[12] F. Botter, B. Rasneur, E. Roth, J. Nucl. Mater. 160 (1988) 48-57.

Google Scholar

[13] F. Alessandrini, C. Alvani, S. Casadio, M.R. Mancini, C.A. Nannetti, J. Nucl. Mater. 224 (1995) 236-244.

Google Scholar

[14] J.A. Shearer, S.W. Tam, C.E. Johnson, Conference: ANS annual meeting, Detroit, MI, USA, 12 Jun 1983.

Google Scholar

[15] M.A. Valenzuela, J. Jimenez-Becerril, P. Bosch, S. Bulbulian, V.H. Lara, J. Am. Ceram. Soc. 79 (1996) 455-460.

Google Scholar

[16] T. Frianeza-Kullberg, D. Mcdonald, K. Davis, Ceram. Trans. 12 (1990) 147.

Google Scholar

[17] C. Alvanic, S. Casadio, EP235099 (1987).

Google Scholar

[18] K.W Sang, S Binpark, et al., J. Nucl. Mater. 257 (1998) 172.

Google Scholar

[19] L.M. Carrera, J. Jimenez-Becerril, P. Bosch, S. Bulbulian, J. Am. Ceram. Soc. 78 (1995) 933-938.

Google Scholar

[20] C. Chi, H. Katsui, R. Tu, T. Goto, Mater. Chem. Phys. 143 (2014) 1338-1343.

Google Scholar

[21] S. Zhang, R. Tu, T. Goto, J. Am. Ceram. Soc. 95 (2012) 2782-2784.

Google Scholar

[22] K. Momma, F. Izumi, J. Appl. Cryst. 44 (2011) 1272-1276.

Google Scholar

[23] M. Marezio, Acta Crystallogr. 19 (1965) 396-400.

Google Scholar