Iron Composite Anodes for Fabricating All-Solid-State Iron-Air Rechargeable Batteries

Article Preview

Abstract:

Hydroxide ion conductors containing KOH were prepared for application in an all-solid-state Fe–air battery. ZrO2 and Mg–Al layered double hydroxide (LDH) were employed as the matrix materials. The ionic conductivity and conducting ion species were evaluated by impedance and electromotive force measurements. Repeated charge and discharge were achieved by using negative electrodes composed of the solid electrolyte and iron oxide-supported carbon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-119

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Débart, A.J. Paterson, J. Bao, P.G. Bruce, α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries, Angew. Chem. Int. Ed. 47 (2008) 4521–4524.

DOI: 10.1002/anie.200705648

Google Scholar

[2] F. Mizuno, S. Nakanishi, Y. Kotani, S. Yokoishi, H. Iba, Rechargeable Li–air batteries with carbonate-based liquid electrolytes, Electrochemistry 78 (2010) 403–405.

DOI: 10.5796/electrochemistry.78.403

Google Scholar

[3] A.K. Thapa, Y. Hidaka, H. Hagiwara, S. Ida, T. Ishihara, Mesoporous β-MnO2 air electrode modified with Pd for rechargeability in Lithium–air battery, J. Electrochem. Soc. 158 (2011) A1483–A1489.

DOI: 10.1149/2.090112jes

Google Scholar

[4] B.T. Hang, T. Watanabe, M. Egashira, S. Okada, J. Yamaki, S. Hata, S.-H. Yoon, I. Mochida, The electrochemical properties of Fe2O3-loaded carbon electrodes for iron–air battery anodes, J. Power Sources 150 (2005) 261–271.

DOI: 10.1016/j.jpowsour.2005.02.028

Google Scholar

[5] B.T. Hang, S.-H. Yoon, S. Okada, J. Yamaki, Effect of metal-sulfide additives on electrochemical properties of nano-sized Fe2O3-loaded carbon for Fe/air battery anodes, J. Power Sources 168 (2007) 522–532.

DOI: 10.1016/j.jpowsour.2007.02.067

Google Scholar

[6] A. Ito, L. Zhao, S. Okada, J. Yamaki, Synthesis of nano-Fe3O4-loaded tubular carbon nanofibers and their application as negative electrodes for Fe/air batteries, J. Power Sources 196 (2011) 8154–8159.

DOI: 10.1016/j.jpowsour.2011.05.043

Google Scholar

[7] H. Kitamura, L. Zhao, B. T. Hang, S. Okada, J. Yamaki, Effect of charge current density on electrochemical performance of Fe/C electrodes in alkaline solutions, J. Electrochem. Soc. 159 (2012) A720–A724.

DOI: 10.1149/2.049206jes

Google Scholar

[8] K. Manohar, S. Malkhandi, B. Yang, C. Yang, G.K.S. Prakash, S.R. Narayanan, A high-performance rechargeable iron electrode for large-scale battery-based energy storage, J. Electrochem. Soc. 159 (2012) A1209–A1214.

DOI: 10.1149/2.034208jes

Google Scholar

[9] G.M. Wu, S.J. Lin, C.C. Yang, Alkaline Zn–air and Al–air cells based on novel solid PVA/PAA polymer electrolyte membranes, J. Membr. Sci. 280 (2006) 802–808.

DOI: 10.1016/j.memsci.2006.02.037

Google Scholar

[10] C. Iwakura, H. Murakami, S. Nohara, N. Furukawa, H. Inoue, Charge–discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte, J. Power Sources 152 (2005) 291–294.

DOI: 10.1016/j.jpowsour.2005.03.175

Google Scholar

[11] C. Iwakura, S. Nohara, N. Furukawa, H. Inoue, The possible use of polymer gel electrolytes in nickel/metal hydride battery, Solid State Ionics 192 (2002) 487–492.

DOI: 10.1016/s0167-2738(02)00092-9

Google Scholar

[12] C.-C. Yang, Study of alkaline nanocomposite polymer electrolytes based on PVA–ZrO2–KOH, Mater. Sci. Eng. B 131 (2006) 256–262.

DOI: 10.1016/j.mseb.2006.04.036

Google Scholar

[13] K. Tadanaga, Y. Furukawa, A. Hayashi, M. Tatsumisago, Direct ethanol fuel cell using hydrotalcite clay as a hydroxide ion conductive electrolyte, Adv. Mater. 22 (2010) 4401–4404.

DOI: 10.1002/adma.201001766

Google Scholar

[14] H. Inoue, Y. Inada, S. Okuda, E. Higuchi, S. Nobara, Inorganic hydrogel electrolyte with liquidlike ionic conductivity, Electrochem. Solid-State lett. 12, (2009) A58–A60.

DOI: 10.1149/1.3059000

Google Scholar

[15] H.-S. Kim, Y. Yamazaki, J.-D. Kim, T. Kudo, I. Honma, High ionic conductivity of Mg–Al layered double hydroxides at intermediate temperature (100–200 °C) under saturated humidity condition (100% RH), Solid State Ionics 181 (2010) 883–888.

DOI: 10.1016/j.ssi.2010.04.037

Google Scholar

[16] A. Matsuda, H. Sakamoto, T. Kishimoto, K. Hayashi T. Kugimiya, H. Muto, Preparation of hydroxide ion conductive KOH–ZrO2 electrolyte for all-solid-state iron/air secondary battery, Solid State Ionics in press (.

DOI: 10.1016/j.ssi.2013.10.053

Google Scholar