[1]
A. Débart, A.J. Paterson, J. Bao, P.G. Bruce, α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries, Angew. Chem. Int. Ed. 47 (2008) 4521–4524.
DOI: 10.1002/anie.200705648
Google Scholar
[2]
F. Mizuno, S. Nakanishi, Y. Kotani, S. Yokoishi, H. Iba, Rechargeable Li–air batteries with carbonate-based liquid electrolytes, Electrochemistry 78 (2010) 403–405.
DOI: 10.5796/electrochemistry.78.403
Google Scholar
[3]
A.K. Thapa, Y. Hidaka, H. Hagiwara, S. Ida, T. Ishihara, Mesoporous β-MnO2 air electrode modified with Pd for rechargeability in Lithium–air battery, J. Electrochem. Soc. 158 (2011) A1483–A1489.
DOI: 10.1149/2.090112jes
Google Scholar
[4]
B.T. Hang, T. Watanabe, M. Egashira, S. Okada, J. Yamaki, S. Hata, S.-H. Yoon, I. Mochida, The electrochemical properties of Fe2O3-loaded carbon electrodes for iron–air battery anodes, J. Power Sources 150 (2005) 261–271.
DOI: 10.1016/j.jpowsour.2005.02.028
Google Scholar
[5]
B.T. Hang, S.-H. Yoon, S. Okada, J. Yamaki, Effect of metal-sulfide additives on electrochemical properties of nano-sized Fe2O3-loaded carbon for Fe/air battery anodes, J. Power Sources 168 (2007) 522–532.
DOI: 10.1016/j.jpowsour.2007.02.067
Google Scholar
[6]
A. Ito, L. Zhao, S. Okada, J. Yamaki, Synthesis of nano-Fe3O4-loaded tubular carbon nanofibers and their application as negative electrodes for Fe/air batteries, J. Power Sources 196 (2011) 8154–8159.
DOI: 10.1016/j.jpowsour.2011.05.043
Google Scholar
[7]
H. Kitamura, L. Zhao, B. T. Hang, S. Okada, J. Yamaki, Effect of charge current density on electrochemical performance of Fe/C electrodes in alkaline solutions, J. Electrochem. Soc. 159 (2012) A720–A724.
DOI: 10.1149/2.049206jes
Google Scholar
[8]
K. Manohar, S. Malkhandi, B. Yang, C. Yang, G.K.S. Prakash, S.R. Narayanan, A high-performance rechargeable iron electrode for large-scale battery-based energy storage, J. Electrochem. Soc. 159 (2012) A1209–A1214.
DOI: 10.1149/2.034208jes
Google Scholar
[9]
G.M. Wu, S.J. Lin, C.C. Yang, Alkaline Zn–air and Al–air cells based on novel solid PVA/PAA polymer electrolyte membranes, J. Membr. Sci. 280 (2006) 802–808.
DOI: 10.1016/j.memsci.2006.02.037
Google Scholar
[10]
C. Iwakura, H. Murakami, S. Nohara, N. Furukawa, H. Inoue, Charge–discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte, J. Power Sources 152 (2005) 291–294.
DOI: 10.1016/j.jpowsour.2005.03.175
Google Scholar
[11]
C. Iwakura, S. Nohara, N. Furukawa, H. Inoue, The possible use of polymer gel electrolytes in nickel/metal hydride battery, Solid State Ionics 192 (2002) 487–492.
DOI: 10.1016/s0167-2738(02)00092-9
Google Scholar
[12]
C.-C. Yang, Study of alkaline nanocomposite polymer electrolytes based on PVA–ZrO2–KOH, Mater. Sci. Eng. B 131 (2006) 256–262.
DOI: 10.1016/j.mseb.2006.04.036
Google Scholar
[13]
K. Tadanaga, Y. Furukawa, A. Hayashi, M. Tatsumisago, Direct ethanol fuel cell using hydrotalcite clay as a hydroxide ion conductive electrolyte, Adv. Mater. 22 (2010) 4401–4404.
DOI: 10.1002/adma.201001766
Google Scholar
[14]
H. Inoue, Y. Inada, S. Okuda, E. Higuchi, S. Nobara, Inorganic hydrogel electrolyte with liquidlike ionic conductivity, Electrochem. Solid-State lett. 12, (2009) A58–A60.
DOI: 10.1149/1.3059000
Google Scholar
[15]
H.-S. Kim, Y. Yamazaki, J.-D. Kim, T. Kudo, I. Honma, High ionic conductivity of Mg–Al layered double hydroxides at intermediate temperature (100–200 °C) under saturated humidity condition (100% RH), Solid State Ionics 181 (2010) 883–888.
DOI: 10.1016/j.ssi.2010.04.037
Google Scholar
[16]
A. Matsuda, H. Sakamoto, T. Kishimoto, K. Hayashi T. Kugimiya, H. Muto, Preparation of hydroxide ion conductive KOH–ZrO2 electrolyte for all-solid-state iron/air secondary battery, Solid State Ionics in press (.
DOI: 10.1016/j.ssi.2013.10.053
Google Scholar