[1]
A.D. Foster, J. Lin, D.C.J. Farrugia, T.A. Dean, A Stress State Dependent Damage Model for the High Temperature Failure of Free-Cutting Steels, Journal of Multiscale Modelling. 1 (2009) 369–387.
DOI: 10.1142/s1756973709000189
Google Scholar
[2]
M.S. Mirza, D.C. Barton, P. Church, The effect of stress triaxiality and strain-rate on the fracture characteristics of ductile metals, Journal of Materials Science. 31 (1996) 453–461.
DOI: 10.1007/bf01139164
Google Scholar
[3]
P.W. Bridgman, Studies in large plastic flow and fracture with special emphasis on the effects of hydrostatic pressure, McGraw-Hill. (1952).
DOI: 10.1126/science.115.2990.424
Google Scholar
[4]
Y. Bai, X. Teng, T. Wierzbicki, On the Application of Stress Triaxiality Formula for Plane Strain Fracture Testing, Journal of Engineering Materials and Technology. 131 (2009) 1–10.
DOI: 10.1115/1.3078390
Google Scholar
[5]
B. Al-Abed, R. Timmins, G. a. Webster, M.S. Loveday, Validation of a Code of Practice for notched bar creep rupture testing: procedures and interpretation of data for design, Materials at High Temperatures. 16 (1999) 143–158.
DOI: 10.1179/mht.1999.014
Google Scholar
[6]
G.A. Webster, S.R. Holdsworth, M.S. Loveday, K. Nikbin, I.J. Perrin, H. Purper, et al., A Code of Practice for conducting notched bar creep tests and for interpreting the data, Fatigue Fracture of Engineering Materials and Structures. 27 (2004).
DOI: 10.1111/j.1460-2695.2004.00765.x
Google Scholar
[7]
B.F. Dyson, M.S. Loveday, Creep Fracture in Nimonic 80A Under Triaxial Tensile Stressing, International Union of Theoretical and Applied Mathermatics. (1981) 406–421.
DOI: 10.1007/978-3-642-81598-0_27
Google Scholar
[8]
A. Othman, J. Lin, D.R. Hayhurst, B.F. Dyson, Comparison of creep rupture lifetimes of single and double notched tensile bars, Acta Metallurgica. 41 (1993) 1215–1222.
DOI: 10.1016/0956-7151(93)90170-w
Google Scholar
[9]
A.M. Othman, B.F. Dyson, D.R. Hayhurst, J. Lin, Continuum Damage Mechanics Modelling of Circumferentially Notched Tension Bars Undergoing Tertiary Creep with Physically-Based Constitutive Equations, Acta Metall. Mater. 42 (1994) 597–611.
DOI: 10.1016/0956-7151(94)90256-9
Google Scholar
[10]
P.S. Khadkikar, J.J. Lewandowski, K. Vedula, C. Western, Notch Effects on Tensile Behavior of Ni3Al and Ni3Al + B, Matallurgical Transactions A. 20 (1989) 1247–1255.
Google Scholar
[11]
T. Børvik, O.S. Hopperstad, T. Berstad, On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part II. Numerical study, European Journal of Mechanics - A/Solids. 22 (2003) 15–32.
DOI: 10.1016/s0997-7538(02)00005-0
Google Scholar
[12]
Y. Bao, Dependence of ductile crack formation in tensile tests on stress triaxiality, stress and strain ratios, Engineering Fracture Mechanics. 72 (2005) 505–522.
DOI: 10.1016/j.engfracmech.2004.04.012
Google Scholar
[13]
J. Lin, Y. Liu, T.A. Dean, A Review on Damage Mechanisms, Models and Calibration Methods under Various Deformation Conditions, International Journal of Damage Mechanics. 14 (2005) 299–319.
DOI: 10.1177/1056789505050357
Google Scholar
[14]
A.D. Foster, J. Lin, D.C.J. Farrugia, T.A. Dean, Experimental investigation of the spatial variation in viscoplastic response of free-machining steels in hot rolling conditions, Journal of Materials Processing Technology. 177 (2006) 497–500.
DOI: 10.1016/j.jmatprotec.2006.03.219
Google Scholar