Fabrication of WS2-Dispersed Al Composite Material by Compression Shearing Method at Room Temperature

Article Preview

Abstract:

In this study, WS2-dispersed Al composite material was fabricated by Compression Shearing Method at Room Temperature, using various WS2 content ratios. The mechanical and friction properties of the WS2-dispersed Al composites were measured. As a result, the density measurements showed that the compacted WS2-dispersed aluminum composite had a relative density of 95 to 99%. Tensile strength of WS2-dispersed Al has 200 MPa. The friction coefficient of Al/0.5vol.%WS2 was 0.14, a reduction of 83%, in comparison with the 1.0 friction coefficient of the pure Al matrix material. The addition of WS2 to the matrix systems used reduced the friction coefficient. Therefore, WS2-dispersed Al composite material is useful for maintenance-free material of slide member.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 622-623)

Pages:

1066-1074

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. M. Kuo, D. A. Rigney, Mater. Sci. and Eng., A157 (1992) pp.131-143.

Google Scholar

[2] H. Goto, M. Ashida, Wear 116 (1987) pp.141-155.

Google Scholar

[3] Mindivan H, Baydogan M, Kayali E S, J. Mater. Charact., 54 (2005) pp.263-269.

Google Scholar

[4] N. Nakayama, T. Kumazawa, J. Qiu, and K. Hanada, Surface Modification Technologies XVIII, (2006) pp.203-207.

Google Scholar

[5] K. Hanada, N. Nakayama, M. Mayuzumi, T. Sano, H. Takeishi, Diamond and Related Materials 11, (2002) pp.749-752.

DOI: 10.1016/s0925-9635(02)00003-1

Google Scholar

[6] K. Hanada, N. Nakayama, M. Mayuzumi, T. Sano, JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, Vol. 119, No. 1-3, (2001) pp.216-221.

Google Scholar

[7] N. Nakayama, M. Mayuzumi, K. Hanada, T. SANO, R. Tominaga and H. Takeishi, Key Engineering Materials, Vols. 177-180, (2000) pp.787-792.

DOI: 10.4028/www.scientific.net/kem.177-180.787

Google Scholar

[8] Suwas, S., S. Upadhyaya, G., Met Mater Process, 7 (1996) 225-249.

Google Scholar

[9] Johnson: Impact Strength of Materials, Edward Arnold, (1972) 35.

Google Scholar

[10] N. Nakayama, M. Ohashi , H. Takeishi, JSME International Journal, 41(1998) pp.326-331.

Google Scholar

[11] N. Nakayama, Toshio Sano, Hiroyuku Takeishi: Measurement of Energy Reflection Coefficient Using Stress Waves, Journal de Physique, IV(1997) C3-97-102.

DOI: 10.1051/jp4:1997319

Google Scholar

[12] N. Nakayama, K. Hanada, T. Sano, S. Horikoshi and H. Takeishi, Proceedings of the International Conference on Technology of Plasticity, (1999) 1321-1326.

Google Scholar

[13] Takeishi, H., Nakayama, N. and Miki, H. J. Soc. Mat. Sci., Japan, 54-3 (2005) pp.233-238.

Google Scholar

[14] Miki, H., Nakayama, N., Takeishi, H. Mat. Sci. Forum, 706-709 (2012) p.1955-(1960).

Google Scholar

[15] Horita. M., Nakayama, N., Saito, N., Miki, H., Miyazaki, T., Takeishi, H., Steel research international, special edition (2012) pp.803-806.

Google Scholar

[16] Nakayama, N., Izawa, N., Horita, M., Saito, N., Miki, H., Utsumi, H., Takeishi, H., J. of JSEM, 13 Special issue (2013) s126.

Google Scholar

[17] T. Saito, H. Takeishi and N. Nakayama, IEEE Transaction on Magnetics, 41-10, (2005) pp.3781-3783.

Google Scholar

[18] T. Saito, H. Takeishi and N. Nakayama, Journal of Alloys and Compounds, 396, (2005) pp.208-211.

Google Scholar

[19] T. Saito, H. Takeishi and N. Nakayama, Journal of applied physics 101, (2007) 09K503.

Google Scholar

[20] Tetsuji Saito, Hisanobu Sato, Hiroyuku Takeishi, and Noboru Nakayama, APPLIED PHYSICS LETTERS, 89-16, (2006) pp.162511-3.

Google Scholar

[21] L. Zou, R. D. Bloebaum and K. N. Bachus, Med. Eng. Phys. 19-1 (1997) pp.63-68.

Google Scholar

[22] T Sasada, S Norose, H Mishina - Journal of Lubrication Tech. 103(2), (1981) pp.195-202.

Google Scholar