Numerical Simulation of the Crystallographic Texture Evolution during Hot Extrusion of Oxides Dispersed Strengthened Steels

Article Preview

Abstract:

Oxides Dispersed Strengthened (ODS) stainless steels are foreseen for fuel cladding tubes in the coming generation of fission nuclear reactors. In spite of a bcc matrix, those steels present a convenient creep behavior thanks to very fine oxides dispersion. Those grades are currently obtained by Powder Metallurgy (PM). After mechanical alloying with the oxide, the powder is commonly consolidated as seamless tube. On CEA facilities, new ferritic ODS stainless steels are produced by Hot Extrusion (HE). The control of the microstructure after extrusion is a key issue for this grade regarding service conditions. In order to explain the microstructure induced by hot processing, the thermo-mechanical history applied to the material must be taken into account. In this study, the strain and thermal histories are obtained from Finite Element Method simulation. Thus, crystallographic texture development during hot extrusion of ODS ferritic steels is simulated using a Visco-Plastic Self-Consistent (VPSC) model. By comparing the texture predictions with the experimental observations, it is shown that self-consistent model reproduces the extrusion texture, α-fiber, very well in the case of monotonic loading. However, for complexes strain path observed during HE, VPSC results differ from the experimental deformation texture.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 622-623)

Pages:

136-147

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. de Carlan, J. -L. Bechade, et al. CEA developments of new ferritic ODS alloys for nuclear applications. J. Nucl. Mater. 430-432. (2009). 386-388.

DOI: 10.1016/j.jnucmat.2008.12.156

Google Scholar

[2] S. Ukai, K. Hatakeyama, et al. Consolidation process study of 9Cr-ODS martensitic steels. J. Nucl. Mater. 758-762. (2002). I. 307-311.

DOI: 10.1016/s0022-3115(02)01044-9

Google Scholar

[3] A. Steckmeyer, M. Praud, et al. Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel. J. Nucl. Mater. 95-100. (2010). 4052.

DOI: 10.1016/j.jnucmat.2010.07.027

Google Scholar

[4] D. T. Hoelzer, J. Bentley, et al. Influence of particle dispersions on the high-temperature strength of ferritic alloys. J. Nucl. Mater. 166-172. (2007). 367-370Part 1.

DOI: 10.1016/j.jnucmat.2007.03.151

Google Scholar

[5] A. Alamo, V. Lambard, et al. Assessment of ODS-14%Cr ferritic alloy for high temperature applications. J. Nucl. Mater. 333-337. (2004). 329-333Part 1.

DOI: 10.1016/j.jnucmat.2004.05.004

Google Scholar

[6] P. Olier, J. Malaplate, et al. Chemical and microstructural evolution on ODS Fe-14CrWTi steel during manufacturing stages. J. Nucl. Mater. 40-46. (2012). 4281-3.

DOI: 10.1016/j.jnucmat.2011.10.042

Google Scholar

[7] R. A. Lebensohn and C. N. Tomé. A selfconsistent approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Materialia 2611-2624. (1993). 41.

DOI: 10.1016/0956-7151(93)90130-k

Google Scholar

[8] M. Ratti, D. Leuvrey, et al. Influence of titanium on nano-cluster (Y, Ti, O) stability in ODS ferritic materials. J. Nucl. Mater. 540-543. (2009). 386-388.

DOI: 10.1016/j.jnucmat.2008.12.171

Google Scholar

[9] D. Sornin, T. Grosdidier, et al. Microstructural study of an ODS stainless steel obtained by hot uni-axial pressing. J. Nucl. Mater. 19-24. (2013). 439.

DOI: 10.1016/j.jnucmat.2013.03.066

Google Scholar

[10] D. Sornin, A. Karch, et al. Finite element method simulation of the hot extrusion of a powder metallurgy stainless steel grade. Int. J. Mater. Form. (2013). Under presse DOI 10. 1007/s12289-013-1156-5.

DOI: 10.1007/s12289-013-1156-5

Google Scholar

[11] G. I. Taylor. Plastic strain in metals. J. Inst. Metals 307-324. (1938). 62.

Google Scholar

[12] R. J. Asaro and A. Needleman. Texture developpment and strain hardening in rate dependent polycrystals. Acta Materialia 923-953. (1985). 33.

DOI: 10.1016/0001-6160(85)90188-9

Google Scholar

[13] A. Molinari, G. R. Canova, et al. A self consistent approach of the large deformation polycrystal viscoplasticity. Acta Materialia 2983-2994. (1987). 35.

DOI: 10.1016/0001-6160(87)90297-5

Google Scholar

[14] A. Hildenbrand, L. S. Tòth, et al. Self-consistent polycrystal modelling of dynamic recrystallization during the shear deformation of a Ti IF steel. Acta Materialia 447-460. (1999). 472.

DOI: 10.1016/s1359-6454(98)00384-x

Google Scholar

[15] S. Gourdet and F. Montheillet. A model of continuous dynamic recrystallization. Acta Materialia 2685-2699. (2003). 519.

DOI: 10.1016/s1359-6454(03)00078-8

Google Scholar

[16] I. J. Beyerlein, R. A. Lebensohn, et al. Modeling texture and microstructural evolution in the equal channel angular extrusion process. Materials Science and Engineering: A 122-138. (2003). 345.

DOI: 10.1016/s0921-5093(02)00457-4

Google Scholar

[17] Q. Xie, P. Eyckens, et al. Polycrystal plasticity models based on crystallographic and morphologic texture: Evaluation of predictions of plastic anisotropy and deformation texture. Materials Science and Engineering: A 66-72. (2013). 5810.

DOI: 10.1016/j.msea.2013.06.008

Google Scholar