[1]
Y. de Carlan, J. -L. Bechade, et al. CEA developments of new ferritic ODS alloys for nuclear applications. J. Nucl. Mater. 430-432. (2009). 386-388.
DOI: 10.1016/j.jnucmat.2008.12.156
Google Scholar
[2]
S. Ukai, K. Hatakeyama, et al. Consolidation process study of 9Cr-ODS martensitic steels. J. Nucl. Mater. 758-762. (2002). I. 307-311.
DOI: 10.1016/s0022-3115(02)01044-9
Google Scholar
[3]
A. Steckmeyer, M. Praud, et al. Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel. J. Nucl. Mater. 95-100. (2010). 4052.
DOI: 10.1016/j.jnucmat.2010.07.027
Google Scholar
[4]
D. T. Hoelzer, J. Bentley, et al. Influence of particle dispersions on the high-temperature strength of ferritic alloys. J. Nucl. Mater. 166-172. (2007). 367-370Part 1.
DOI: 10.1016/j.jnucmat.2007.03.151
Google Scholar
[5]
A. Alamo, V. Lambard, et al. Assessment of ODS-14%Cr ferritic alloy for high temperature applications. J. Nucl. Mater. 333-337. (2004). 329-333Part 1.
DOI: 10.1016/j.jnucmat.2004.05.004
Google Scholar
[6]
P. Olier, J. Malaplate, et al. Chemical and microstructural evolution on ODS Fe-14CrWTi steel during manufacturing stages. J. Nucl. Mater. 40-46. (2012). 4281-3.
DOI: 10.1016/j.jnucmat.2011.10.042
Google Scholar
[7]
R. A. Lebensohn and C. N. Tomé. A selfconsistent approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Materialia 2611-2624. (1993). 41.
DOI: 10.1016/0956-7151(93)90130-k
Google Scholar
[8]
M. Ratti, D. Leuvrey, et al. Influence of titanium on nano-cluster (Y, Ti, O) stability in ODS ferritic materials. J. Nucl. Mater. 540-543. (2009). 386-388.
DOI: 10.1016/j.jnucmat.2008.12.171
Google Scholar
[9]
D. Sornin, T. Grosdidier, et al. Microstructural study of an ODS stainless steel obtained by hot uni-axial pressing. J. Nucl. Mater. 19-24. (2013). 439.
DOI: 10.1016/j.jnucmat.2013.03.066
Google Scholar
[10]
D. Sornin, A. Karch, et al. Finite element method simulation of the hot extrusion of a powder metallurgy stainless steel grade. Int. J. Mater. Form. (2013). Under presse DOI 10. 1007/s12289-013-1156-5.
DOI: 10.1007/s12289-013-1156-5
Google Scholar
[11]
G. I. Taylor. Plastic strain in metals. J. Inst. Metals 307-324. (1938). 62.
Google Scholar
[12]
R. J. Asaro and A. Needleman. Texture developpment and strain hardening in rate dependent polycrystals. Acta Materialia 923-953. (1985). 33.
DOI: 10.1016/0001-6160(85)90188-9
Google Scholar
[13]
A. Molinari, G. R. Canova, et al. A self consistent approach of the large deformation polycrystal viscoplasticity. Acta Materialia 2983-2994. (1987). 35.
DOI: 10.1016/0001-6160(87)90297-5
Google Scholar
[14]
A. Hildenbrand, L. S. Tòth, et al. Self-consistent polycrystal modelling of dynamic recrystallization during the shear deformation of a Ti IF steel. Acta Materialia 447-460. (1999). 472.
DOI: 10.1016/s1359-6454(98)00384-x
Google Scholar
[15]
S. Gourdet and F. Montheillet. A model of continuous dynamic recrystallization. Acta Materialia 2685-2699. (2003). 519.
DOI: 10.1016/s1359-6454(03)00078-8
Google Scholar
[16]
I. J. Beyerlein, R. A. Lebensohn, et al. Modeling texture and microstructural evolution in the equal channel angular extrusion process. Materials Science and Engineering: A 122-138. (2003). 345.
DOI: 10.1016/s0921-5093(02)00457-4
Google Scholar
[17]
Q. Xie, P. Eyckens, et al. Polycrystal plasticity models based on crystallographic and morphologic texture: Evaluation of predictions of plastic anisotropy and deformation texture. Materials Science and Engineering: A 66-72. (2013). 5810.
DOI: 10.1016/j.msea.2013.06.008
Google Scholar