[1]
J.R. Duflou, J. Sutherland, D. Dornfeld, C. Herrmann , J. Jeswiet, S. Kara, M. Hauschild, K. Kellens, Towards energy and resource efficient manufacturing: A processes and systems approach, CIRP Ann. - Manuf. Technol. 61/2 (2012) 587-609.
DOI: 10.1016/j.cirp.2012.05.002
Google Scholar
[2]
CO2PE! - Cooperative Effort on Process Emissions in Manufacturing, Information on www. co2pe. org.
Google Scholar
[3]
F. Zhao, W. Z. Bernstein, G. Naik, G. J. Cheng, Environmental assessment of laser assisted manufacturing: case studies on laser shock peening and laser assisted turning, J. Clean. Prod. 18 (2010) 1311-1319.
DOI: 10.1016/j.jclepro.2010.04.019
Google Scholar
[4]
M.F. Rajemi, P.T. Mativenga, A. Aramcharoen, Sustainable machining: selection of optimum turning conditions based on minimum energy considerations, J. Clean. Prod. 18 (2010) 1059-1065.
DOI: 10.1016/j.jclepro.2010.01.025
Google Scholar
[5]
G. Campatelli, L. Lorenzini, A. Scippa, Optimization of process parameters using a Response Surface Method for minimizing power consumption in the milling of carbon steel, J. Clean. Prod., http: /dx. doi. org/10. 1016/j. jclepro. 2013. 10. 025.
DOI: 10.1016/j.jclepro.2013.10.025
Google Scholar
[6]
A. Vijayaraghavan, M. Helu, Enabling technologies for assuring green manufacturing, in: D.A. Dornfeld (Ed. ), Green Manufacturing: Fundamentals and Applications, Springer Science + Business Media, New York, 2013, pp.255-267.
DOI: 10.1007/978-1-4419-6016-0_11
Google Scholar
[7]
J. Yan, L. Li., Multi-objective optimization of milling parameters - the trade-offs between energy, production rate and cutting quality, J. Clean. Prod., http: /dx. doi. org/10. 1016/j. jclepro. 2013. 10. 031.
DOI: 10.1016/j.jclepro.2013.02.030
Google Scholar
[8]
J.C. Aurich, B. Linke, M. Hauschild, M. Carrella, B, Kirsch, Sustainability of abrasive processes, CIRP Ann. Manuf. Technol. 62 (2013) 653-672.
DOI: 10.1016/j.cirp.2013.05.010
Google Scholar
[9]
K. Kellens, Renaldi, W. Dewulf, J.P. Kruth, J.R. Duflou, Environmental Impact Modeling of Selective Laser Sintering Processes, accepted for publication in the Rapid Prototyping Journal, (2014).
DOI: 10.1108/rpj-02-2013-0018
Google Scholar
[10]
W.R. Morrow, H. Qi, I. Kim, J. Mazumder, S.J. Skerlos, Environmental aspects of laser-based and conventional tool and die manufacturing, J. Clean. Prod. 15 (2007) 932-943.
DOI: 10.1016/j.jclepro.2005.11.030
Google Scholar
[11]
G. Ingarao, R. Di Lorenzo, F. Micari, Sustainability issues in sheet metal forming processes: an overview, J. Clean. Prod. 19 (2011) 337-347.
DOI: 10.1016/j.jclepro.2010.10.005
Google Scholar
[12]
J. P. Santos, M., Oliveira, F. G. Almeida, J. P. Pereira, A. Reis, Improving the environmental performance of machine-tools: influence of technology and throughput on the electrical energy consumption of a press-brake, J. Clean. Prod. 19 (2011).
DOI: 10.1016/j.jclepro.2010.10.009
Google Scholar
[13]
G Ingarao, H. Vanhove, K. Kellens, J. R. Duflou, A comprehensive analysis of electric energy consumption of single point incremental forming processes, J. Clean. Prod., http: /dx. doi. org/ 10. 1016/j. jclepro. 2013. 12. 022.
DOI: 10.1016/j.jclepro.2013.12.022
Google Scholar
[14]
M. A. Dittrich, T.G. Gutowski, J. Cao, J.T. Roth, C. Xia, V. Kiridena, F. Ren, H. Henning, Exergy analysis of incremental sheet forming, Prod. Eng. Res. Devel. 6 (2012) 69-177.
DOI: 10.1007/s11740-012-0375-9
Google Scholar
[15]
M.F. Ashby, Materials and the environment, second edition, Butterworth-Heinemann, (2013).
Google Scholar
[16]
G. Hammond, C. Jones, Inventory of carbon and Energy (ICE), Annex B: how to account for recycling a methodology for recycling, The University of Bath, Bath, UK, (2010).
Google Scholar
[17]
T. A. Mayyas, A. Qattawi, A. R. Mayyas, M. A. Omar, Life cycle assessment-based selection for a sustainable lightweight body-in-white design, Energy 39 (2012) 412-425.
DOI: 10.1016/j.energy.2011.12.033
Google Scholar
[18]
T. Devoldere, W. Dewulf, W. Deprez, B. Willems, J. Duflou, Improvement Potential for Energy Consumption in discrete Part Production machines. Advances in life cycle engineering for sustainable manufacturing businesses, Part 3 (2007) 311-316.
DOI: 10.1007/978-1-84628-935-4_54
Google Scholar
[19]
R. L. Milford, J. M. Allwood, J. M. Cullen, Assessing the potential of yield improvements, through process scrap reduction, for energy and CO2 abatement in the steel and aluminium sectors, Resources, Conservation and Recycling 55 (2011).
DOI: 10.1016/j.resconrec.2011.05.021
Google Scholar
[20]
R. Kervick, C.A. Blue, P.B. Kadolkar, T. Ando, H. Lu, K. Nakazawa, H. Mayer, G. Mochnal, Enhancement of Aluminum Alloy Forgings through Rapid Billet Heating, final techical report, U.S. department of Energy, Energy efficiency and renewable Energy, (2006).
DOI: 10.2172/886705
Google Scholar