[1]
Joost R. Duflou, John W. Sutherland, David Dornfeld, Christoph Herrmann, Jack Jeswiet, Sami Kara, Michael Hauschild, Karel Kellens, Towards energy and resource efficient manufacturing: A processes and systems approach, CIRP Annals - Manufacturing Technology. 61 (2012).
DOI: 10.1016/j.cirp.2012.05.002
Google Scholar
[2]
A. Abele, R. Anderl, H. Birkhofer, Environmentally-Friendly Product Development - Methods and Tools, Springer, Darmstadt, (2005).
DOI: 10.1007/b138604
Google Scholar
[3]
M. Overcash, J. Twomey, J. Isaacs, Manufacturing Unit Process Life Cycle Inventories (UPLCI), Permis'09, Gaithersburg, 30-31 (2009).
DOI: 10.1145/1865909.1865916
Google Scholar
[4]
S. Kara, W. Li, Unit Process Energy Consumption Models for Material Removal Processes, CIRP Annals – Manufacturing Technology. 60 (2011) 37-40.
DOI: 10.1016/j.cirp.2011.03.018
Google Scholar
[5]
J. Jeswiet, S. Kara, Carbon emissions and CESTM in manufacturing, CIRP Annals - Manufacturing Technology. 57 (2008) 17-20.
DOI: 10.1016/j.cirp.2008.03.117
Google Scholar
[6]
G. Ingarao, G. Ambrogio, F. Gagliardi, R. Di Lorenzo, A sustainability point of view on sheet metal forming operations: material wasting and energy consumption in incremental forming and stamping processes, Journal of Cleaner Production. 29-30 (2012).
DOI: 10.1016/j.jclepro.2012.01.012
Google Scholar
[7]
Gasper Gantar, Tomaz Pepelnjak, Karl Kuzman, Optimization of sheet metal forming processes by the use of numerical simulations, Journal of Materials Processing Technology. 130–131 (2002) 54-59.
DOI: 10.1016/s0924-0136(02)00786-0
Google Scholar
[8]
L. Donati, L. Tomesani, The prediction of seam welds quality in aluminum extrusion, Journal of Materials Processing Technology. 153–154 (2004) 366–373.
DOI: 10.1016/j.jmatprotec.2004.04.215
Google Scholar
[9]
L. Li, H. Zhang, J. Zhou, J. Duszczyk, G. Y. Li, Z. H. Zhong, Numerical and experimental study on the extrusion through a porthole die to produce a hollow magnesium profile with longitudinal weld seams, Materials & Design. 29 (2008) 1190-1198.
DOI: 10.1016/j.matdes.2007.05.003
Google Scholar
[10]
E. Ceretti, L. Fratini, F. Gagliardi, C. Giardini, A new approach to study material bonding in extrusion porthole dies, CIRP Annals - Manufacturing Technology. 58 (2009) 259-262.
DOI: 10.1016/j.cirp.2009.03.010
Google Scholar
[11]
S. Kukkonen, J. Lampinen, Performance assessment of generalized differential evolution 3 with a given set of constrained multi-objective test problems, Evolutionary Computation, CEC'09. IEEE Congress, Trondheim (2009).
DOI: 10.1109/cec.2009.4983178
Google Scholar
[12]
M. Caramia, P. Dell'Olmo, Multi-objective management in freight logistics: Increasing capacity, service level and safety with optimization algorithms, Springer, (2008).
DOI: 10.1007/978-3-030-50812-8_2
Google Scholar
[13]
S. Kukkonen, J. Lampinen, GDE3: The third evolution step of generalized differential evolution, Evolutionary Computation, The 2005 IEEE Congress, Edinburgh (2005).
DOI: 10.1109/cec.2005.1554717
Google Scholar
[14]
S. Ramesh, S. Kannan, S. Baskar, An improved generalized differential evolution algorithm for multi-objective reactive power dispatch, Engineering Optimization. 44 (2012) 391-405.
DOI: 10.1080/0305215x.2011.576761
Google Scholar
[15]
K. Deb, R.B. Agrawal, Simulated binary crossover for continuous search space, Complex Systems. 9 (1994) 1-34.
Google Scholar
[16]
K. Deb, S. Agrawal, A. Pratap, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, Lecture notes in computer science. 1917 (2000) 849-858.
DOI: 10.1007/3-540-45356-3_83
Google Scholar
[17]
I.Y. Kim, O. L. De Weck, Adaptive weighted-sum method for bi-objective optimization: Pareto front generation, Structural and multidisciplinary optimization. 29 (2005) 149-158.
DOI: 10.1007/s00158-004-0465-1
Google Scholar
[18]
M. Laumanns, L. Thiele, E. Zitzler, An Adaptive Scheme to Generate the Pareto Front Based on the Epsilon-Constraint Method, Practical Approaches to Multi-Objective Optimization. 04461 (2005).
Google Scholar
[19]
J. Heaton, Introduction to neural networks for Java, Heaton Research, (2008).
Google Scholar
[20]
J.J. Durillo, A.J. Nebro, jMetal: A Java framework for multi-objective optimization, Advances in Engineering Software. 42 (2011) 760-771.
DOI: 10.1016/j.advengsoft.2011.05.014
Google Scholar