[1]
P. Eh. Hovsepian, D.B. Lewis, Q. Luo, A. Farinotti, Corrosion resistance of CrN/NbN superlattice coatings grown by various physical vapour deposition techniques, Thin Solid Films 488 (2005) 1-8.
DOI: 10.1016/j.tsf.2005.03.016
Google Scholar
[2]
J. Vetter, Vacuum arc coatings for tools: potential and application, Surf. Coat. Technol. 76 (1995) 719–724.
DOI: 10.1016/0257-8972(95)02499-9
Google Scholar
[3]
T. Björk, M. Berger, R. Westergard, S. Hogmark, J. Bergström, New physical vapour deposition coatings applied to extrusion dies, Surf. Coat. Technol. 146 (2001) 33–41.
DOI: 10.1016/s0257-8972(01)01365-2
Google Scholar
[4]
K. Singh, P-K. Limaye, N.L. Soni, A.K. Grover, R.G. Agrawal, A.K. Suri, Wear studies of (Ti–Al)N coatings deposited by reactive magnetron sputtering, Wear 258 (2005) 1813–1824.
DOI: 10.1016/j.wear.2004.12.023
Google Scholar
[5]
J.X. Deng, J.H. Liu, J.L. Zhao, W.L. Song, Wear mechanisms of PVD ZrN coated tools in machining, Int. J. Refract. Met. H 26 (2008) 164–172.
DOI: 10.1016/j.ijrmhm.2007.05.009
Google Scholar
[6]
P. Panjan, B. Navinsek, M. Cekada, A. Zalar, Oxidation behaviour of TiAlN coatings sputtered at low temperature, Vacuum 53 (1999) 127–133.
DOI: 10.1016/s0042-207x(98)00407-2
Google Scholar
[7]
M. Kawate, A.K. Hashimoto, T. Suzuki, Oxidation resistance of Cr1-xAlxN and Ti1-xAlxN films, Surf. Coat. Technol. 165 (2003) 163–167.
DOI: 10.1016/s0257-8972(02)00473-5
Google Scholar
[8]
A. Horling, L. Hultman, M. Oden, J. Sjolen, L. Karlsson, Mechanical properties and machining performance of Ti1-xAlxN -coated cutting tools, Surf. Coat. Technol. 191 (2005) 384–392.
DOI: 10.1016/j.surfcoat.2004.04.056
Google Scholar
[9]
H.C. Barshilia, M.S. Prakash, A. Jain, K.S. Rajam, Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films, Vacuum 77 (2005) 169–179.
DOI: 10.1016/j.vacuum.2004.08.020
Google Scholar
[10]
C. Nouveau, C. Labidi, J. -F. Ferreira Martin, R. Collet, A. Djouadi, Application of CrAlN coatings on carbide substrates in routing of MDF, Wear 263 (2007) 1291–1299.
DOI: 10.1016/j.wear.2006.12.069
Google Scholar
[11]
S.G. Harris, E.D. Doyle, A.C. Vlasveld, J. Audy, D. Quick, A study of the wear mechanisms of Ti1−xAlxN and Ti1−x−yAlxCryN coated high-speed steel twist drills under dry machining conditions, Wear 254 (2003) 723-734.
DOI: 10.1016/s0043-1648(03)00258-8
Google Scholar
[12]
F. Weber, F. Fontaine, M. Scheib, W. Bock, Cathodic arc evaporation of (Ti, Al)N coatings and (Ti, Al)N/TiN multilayer-coatings—correlation between lifetime of coated cutting tools, structural and mechanical film properties, Surf. Coat. Technol. 177–178 (2004).
DOI: 10.1016/j.surfcoat.2003.09.037
Google Scholar
[13]
H.G. Prengel, P.C. Jindal, K.H. Wendt, A.T. Santhanam, P.L. Hegde, R.M. Penich, A new class of high performance PVD coatings for carbide cutting tools, Surf. Coat. Technol. 139 (2001) 25-34.
DOI: 10.1016/s0257-8972(00)01080-x
Google Scholar
[14]
M. Nordin, M. Larsson, S. Hogmark, Mechanical and tribological properties of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide, Surf. Coat. Technol. 106 (1998) 234-241.
DOI: 10.1016/s0257-8972(98)00544-1
Google Scholar
[15]
P.C. Yashar, W.D. Sproul, Nanometer scale multilayered hard coatings, Vacuum 55 (1999) 179-190.
DOI: 10.1016/s0042-207x(99)00148-7
Google Scholar
[16]
F. Vaz, L. Rebouta, M. Andritschky, M.F. da Silva, J.C. Soares, The effect of the addition of Al and Si on the physical and mechanical properties of titanium nitride, J. Mater. Process. Technol. 92–93 (1999) 169-176.
DOI: 10.1016/s0924-0136(99)00159-4
Google Scholar
[17]
G.S. Fox-Rabinovich, K. Yamamoto, S.C. Veldhuis, A.I. Kovalev, G.K. Dosbaeva, Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions, Surf. Coat. Technol. 200 (2005) 1804-1813.
DOI: 10.1016/j.surfcoat.2005.08.057
Google Scholar
[18]
E. Spain, J.C. Avelar-Batista, M. Letch, J. Housden, B. Lerga, Characterisation and applications of Cr–Al–N coatings, Surf. Coat. Technol. 200 (2005) 1507-1513.
DOI: 10.1016/j.surfcoat.2005.08.086
Google Scholar
[19]
C. Brecher, G. Spachtholz, K. Bobzin, E. Lugscheider, O. Knotek, M. Maes, Superelastic (Cr, Al)N coatings for high end spindle bearings, Surf. Coat. Technol. 200 (2005) 1738-1744.
DOI: 10.1016/j.surfcoat.2005.08.043
Google Scholar
[20]
H. Scheerer, T.H. Hoche, E. Broszeit, B. Schramm, E. Abele, C. Berger, Effects of the chromium to aluminum content on the tribology in dry machining using (Cr, Al)N coated tools, Surf. Coat. Technol. 200 (2005) 203-207.
DOI: 10.1016/j.surfcoat.2005.02.112
Google Scholar
[21]
S. Veprek, The search for novel, superhard materials, J. Vac. Sci. Technol. A 17 (1999) 2401-2420.
Google Scholar
[22]
C.H. Hsu, C.Y. Lee, Z.H. Lin, W.Y. Ho, C.K. Lin, Bias effects on microstructure, mechanical properties and corrosion resistance of arc-evaporated CrTiAlN nanocomposite films on AISI 304 stainless steel, Thin Solid Films 519 (2011) 4928-4932.
DOI: 10.1016/j.tsf.2011.01.055
Google Scholar
[23]
U. Wahlstrom, L. Hultman, J. -E. Sundgren, I. Pertov, F. Adibi, J.E. Greene, Crystal growth and microstructure of polycrystalline Ti1−xAlxN alloy films deposited by ultra-high-vacuum dual-target magnetron sputtering, Thin Solid Films 235 (1991).
DOI: 10.1016/0040-6090(93)90244-j
Google Scholar
[24]
H. Hasegawa,A. Kimura, T. Suzuki, Ti1−xAlxN, Ti1−xZrxN and Ti1−xCrxN films synthesized by the AIP method, Surf. Coat. Technol. 132 (2000) 76-79.
DOI: 10.1016/s0257-8972(00)00737-4
Google Scholar
[25]
G.M. Pharr, Measurement of mechanical properties of ultra-low load indentation, Mater. Sci. Eng. A, 253 (1998) 151-159.
DOI: 10.1016/s0921-5093(98)00724-2
Google Scholar
[26]
M. F. Doerner, W.D. Nix, A method for interpreting the data from depth-sensing indentation instrurnents, J. Mater. Res. 1 (1986) 601-609.
DOI: 10.1557/jmr.1986.0601
Google Scholar
[27]
M. Cabibbo, P. Ricci, R. Cecchini, Z. Rymuza, J. Sullivan, S. Dub, S. Cohen, An international round-robin calibration protocol for nanoindentationmeasurements, Micron 43 (2012) 215–222.
DOI: 10.1016/j.micron.2011.07.016
Google Scholar
[28]
J.L. Mo, M.H. Zhu, A. Leyland, A. Matthews, Impact wear and abrasion resistance of CrN, AlCrN and AlTiN PVD coatings, Surf. Coat. Technol. 215 (2013) 170-177.
DOI: 10.1016/j.surfcoat.2012.08.077
Google Scholar
[29]
L. Aihua, D. Jianxin, C. Haibing, C. Yang, Z. Jun, Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings, Int. J. Refr. Met. Hard Mate. 31 (2012) 82-88.
DOI: 10.1016/j.ijrmhm.2011.09.010
Google Scholar
[30]
D. Jakubéczyová, P. Hvizdoš, M. Selecká, Investigation of thin layers deposited by two PVD techniques on high speed steel produced by powder metallurgy, App. Surf. Sci. 258 (2012) 5105-5110.
DOI: 10.1016/j.apsusc.2012.01.138
Google Scholar
[31]
Y. -Y. Chang, D. -Y. Wang, Characterization of nanocrystalline AlTiN coatings synthesized by a cathodic-arc deposition process, Surf. Coat. Technol. 201 (2007) 6699-6701.
DOI: 10.1016/j.surfcoat.2006.09.036
Google Scholar
[32]
Y. -J. Lin, A. Agrawal, Y. Fang, Wear progressions and tool life enhancement with AlCrN coated inserts in high-speed dry and wet steel lathing, Wear 264 (2008) 226-234.
DOI: 10.1016/j.wear.2007.03.007
Google Scholar