[1]
Boyer, R. R., 1996, An overview on the use of titanium in the aerospace industry, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 213/1-2: 103-114.
DOI: 10.1016/0921-5093(96)10233-1
Google Scholar
[2]
A. Astarita, A. Ducato, L. Fratini, V. Paradiso, F. Scherillo, A. Squillace, C. Testani, C. Velotti - Beta Forging of Ti-6Al-4V: microstructure evolution and mechanical properties - Key Engineering Materials Vols. 554-557 (2013).
DOI: 10.4028/www.scientific.net/kem.554-557.359
Google Scholar
[3]
Kahles, J. F., Field, M., Eylon, D., Froes, F. H., 1985, Machining of Titanium-Alloys, Journal of Metals, 37/4: 27-35.
DOI: 10.1007/bf03259441
Google Scholar
[4]
Riaz Muhammad, Mohammad Sajid Hussain, Agostino Maurotto, Carsten Siemers, Anish Roy , Vadim V. Silberschmidt - Analysis of a free machining α+β titanium alloy using conventional and ultrasonically assisted turning Journal of Materials Processing Technology Volume 214, Issue 4, April 2014, Pages 906–915.
DOI: 10.1016/j.jmatprotec.2013.12.002
Google Scholar
[5]
Park, N. K., Yeom, J. T., Na, Y. S., 2002, Characterization of deformation stability in hot forging of conventional Ti-6Al-4V using processing maps, Journal of Materials Processing Technology, 130: 540-545.
DOI: 10.1016/s0924-0136(02)00801-4
Google Scholar
[6]
Kim, J. H., Semiatin, S. L., Lee, Y. H., Lee, C. S., 2011, A Self-Consistent Approach for Modeling the Flow Behavior of the Alpha and Beta Phases in Ti-6Al-4V, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 42A/7: 1805-1814.
DOI: 10.1007/s11661-010-0567-x
Google Scholar
[7]
E. Arzt, M.F. Ashby, K.E. Easterling, Metall. Trans. A 14 (1983) 211–221.
Google Scholar
[8]
W.B. Li, M.F. Ashby, K.E. Easterling, Acta Metall. 35 (1987) 2831–2842.
Google Scholar
[9]
R. Baccino, F. Morret, F. Fellerin, D. Guichard, G. Raisson, Mater. Des. 21 (2000) 345–350. 8.
Google Scholar
[10]
S.J. Mashl, J.C. Hebeisen, C.G. Hjorth, JOM 7 (1999) 29–31.
Google Scholar
[11]
F.H. Froes, S.J. Mashl, JOM 56 (2004) 46–48.
Google Scholar
[12]
H.V. Atkinson, S. Davies, Metall. Mater. Trans. A 31 (2000) 2981–2987.
Google Scholar
[13]
F.H. Froe, J. Hebeisen, In: Hot Isostatic Pressing Int. Conf., 1999, Beijing, (1999).
Google Scholar
[14]
L. Wang, Z.B. Lang, H.P. Shi, Trans. Nonferrous Met. Soc. China 17 (2007) 639–643.
Google Scholar
[15]
W.X. Yuan, J. Mei, V. Samarov, D. Seliverstov, X. Wu, J. Mater. Process. Technol. 182 (2007) 39–49.
Google Scholar
[16]
Y. Xue, L.H. Lang, G.L. Bu, L. Li, Sci. Sinter. 43 (2011) 247–260.
Google Scholar
[17]
Henke, T., Bambach, M., Hirt, G., 2013, Quantification of uncertainties in grain size predictions of a microstructure-based flow stress model and application to gear wheel forging, CIRP Annals - Manufacturing Technology, 62/1: 287-290.
DOI: 10.1016/j.cirp.2013.03.121
Google Scholar
[18]
Behrens, B. A., 2008, Finite element analysis of die wear in hot forging processes, CIRP Annals - Manufacturing Technology, 57/1: 305-308.
DOI: 10.1016/j.cirp.2008.03.087
Google Scholar
[19]
Bariani, P. P., Dal Negro, T., Bruschi, S., 2004, Testing and modelling of material response to deformation in bulk metal forming, CIRP Annals - Manufacturing Technology, 53/2: 573-595.
DOI: 10.1016/s0007-8506(07)60030-4
Google Scholar
[20]
Geijselaers, H. J. M., Huétink, H., 2004, Thermo‐Mechanical Analysis with Phase Transformations, AIP Conference Proceedings, 712/1: 1508-1513.
Google Scholar
[21]
Casotto, S., Pascon, F., Habraken, A. M., Bruschi, S., 2005, Thermo-mechanical-metallurgical model to predict geometrical distortions of rings during cooling phase after ring rolling operations, International Journal of Machine Tools & Manufacture, 45/6: 657-664.
DOI: 10.1016/j.ijmachtools.2004.10.007
Google Scholar
[22]
Sha, W., Malinov, S. Titanium Alloys: Modelling of Microstructure, Properties and Applications: CRC Press; (2009).
Google Scholar
[23]
E. Arzt, M.F. Ashby, E. Easterling, Practical Application of Hot Isostatic Pressing diagrams: Four Case Studies, Metallurgical Transaction A, Vol. 14A, Feb. 1983, pp.211-221.
DOI: 10.1007/bf02651618
Google Scholar
[24]
M. J. Donachie, Titanium Handbook, A technical Guide, ASM ed, 2004, p.117.
Google Scholar
[25]
- W. A. Backofen et al. ; Trans. ASM Quart. (1964) 57, 980.
Google Scholar
[26]
W. A. Backofen et al. ; Trans. AIME (1967) 239, 1034.
Google Scholar
[27]
- J. C. Huang et al. ; Scripta Mater. (1998) 39(1), 95 e rif.
Google Scholar
[28]
- M. Mabuchi, K. Higashi; Scripta Mater. (1996) 34(12), 1893.
Google Scholar
[29]
- E. W. Hart et al. ; Acta Metal. Mater. (1967) 15, 351.
Google Scholar
[30]
- S. D. Dahlgren; Trans. AIME (1968) 242, 126.
Google Scholar
[31]
W. B. Morrison; Trans. ASM (1968) 61, 423.
Google Scholar
[32]
D. H. Avery et al. ; ibid. (1965) 58, 551.
Google Scholar
[33]
- H. W. Hayden et al. ; Trans. ASM (1968) 61, 542.
Google Scholar
[34]
- J. Headworth et al. ; J. Mat. Sci. (1971) 6, 1061.
Google Scholar
[35]
M.J.R. Barboza, et Al., Materials Science and Engineering A 428 (2006) 319–326.
Google Scholar
[36]
G. Malakondaiah, P.R. Rao, Acta Metall. 29 (1981) 1263–1275.
Google Scholar
[37]
E. W. Collings, Materials Properties Handbook: Titanium Alloys, ASM, p.497.
Google Scholar
[38]
Buffa G., Ducato A. , Fratini L., Numerical procedure for residual stresses prediction in friction stir welding, Finite Elements in Analysis and Design, 47(2011), 470–476.
DOI: 10.1016/j.finel.2010.12.018
Google Scholar
[39]
Buffa G. , Ducato A., Fratini L. , Micari F., Numerical prediction of Biphasic Titanium Alloys Microstructure in Hot Forging Operations, 14th international conference of Metal Forming, (2012).
Google Scholar
[40]
C. Testani, A. Squillace and L. Fratini, Beta-Forging of Ti6Al4V Titanium Alloy Powders consolidated by HIP: plastic flow and strain rate relation, Mat. Science Forum, Vol-783-786, pag. 613-618, (2014).
DOI: 10.4028/www.scientific.net/msf.783-786.613
Google Scholar