Beta-Forging of Titanium Ti6Al4V Alloy Powders: Phase Evolution Modeling and Strain-Rate Relation

Article Preview

Abstract:

Ti6Al4V is one of the best known and studied titanium alloy for the optimization of the thermo-mechanical treatments. The Ti-forgings represent a valid opportunity for the aircraft manufacturers and designers because of high tensile and fatigue properties. Nevertheless the total-cost reduction of the manufacturing-chain requires both: the ability to manufacture nearer-shaped components by mean of forging-process-modification and less final machining (material scraps). Even if Ti6Al4V is a well known alloy, any process parameters modification introduced still represents a challenge for the metallurgists and manufacturers.The idea, at the base of the present work, has been the feasibility study of forging experiments in the Beta-field using Hot Isostatic Pressed (HIP) powders billets. The preliminary compression tests has been carried out in laboratory and the results have been validated in a industrial Forging-Workshop. The deformation behavior of Ti6Al4V HIPped powders during high temperature deformation tests is reported. Laboratory compression and tensile tests have been coupled with relaxation tests in order to achieve robust data about strain rate sensitivity m-coefficient and activation energy Q.The obtained results have been fitted for the assessment of generalized exponential deformation law. The final result is a “Dorn model” that takes into account and compares all the results from the three different deformation tests: compression, tensile and relaxation. The deformation tests have been carried out at temperatures ranging from 1173 K up to 1373 K and strain rate from 0,01 s-1 up to about 1 s-1, trying to describe the high temperature complex shape forging operations.Finally the recorded deformation curves has been used for modeling by means of FEM DeformTM code the deformation process and microstructure evolution by means of an Avrami type law.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 622-623)

Pages:

15-26

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Boyer, R. R., 1996, An overview on the use of titanium in the aerospace industry, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 213/1-2: 103-114.

DOI: 10.1016/0921-5093(96)10233-1

Google Scholar

[2] A. Astarita, A. Ducato, L. Fratini, V. Paradiso, F. Scherillo, A. Squillace, C. Testani, C. Velotti - Beta Forging of Ti-6Al-4V: microstructure evolution and mechanical properties - Key Engineering Materials Vols. 554-557 (2013).

DOI: 10.4028/www.scientific.net/kem.554-557.359

Google Scholar

[3] Kahles, J. F., Field, M., Eylon, D., Froes, F. H., 1985, Machining of Titanium-Alloys, Journal of Metals, 37/4: 27-35.

DOI: 10.1007/bf03259441

Google Scholar

[4] Riaz Muhammad, Mohammad Sajid Hussain, Agostino Maurotto, Carsten Siemers, Anish Roy , Vadim V. Silberschmidt - Analysis of a free machining α+β titanium alloy using conventional and ultrasonically assisted turning Journal of Materials Processing Technology Volume 214, Issue 4, April 2014, Pages 906–915.

DOI: 10.1016/j.jmatprotec.2013.12.002

Google Scholar

[5] Park, N. K., Yeom, J. T., Na, Y. S., 2002, Characterization of deformation stability in hot forging of conventional Ti-6Al-4V using processing maps, Journal of Materials Processing Technology, 130: 540-545.

DOI: 10.1016/s0924-0136(02)00801-4

Google Scholar

[6] Kim, J. H., Semiatin, S. L., Lee, Y. H., Lee, C. S., 2011, A Self-Consistent Approach for Modeling the Flow Behavior of the Alpha and Beta Phases in Ti-6Al-4V, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 42A/7: 1805-1814.

DOI: 10.1007/s11661-010-0567-x

Google Scholar

[7] E. Arzt, M.F. Ashby, K.E. Easterling, Metall. Trans. A 14 (1983) 211–221.

Google Scholar

[8] W.B. Li, M.F. Ashby, K.E. Easterling, Acta Metall. 35 (1987) 2831–2842.

Google Scholar

[9] R. Baccino, F. Morret, F. Fellerin, D. Guichard, G. Raisson, Mater. Des. 21 (2000) 345–350. 8.

Google Scholar

[10] S.J. Mashl, J.C. Hebeisen, C.G. Hjorth, JOM 7 (1999) 29–31.

Google Scholar

[11] F.H. Froes, S.J. Mashl, JOM 56 (2004) 46–48.

Google Scholar

[12] H.V. Atkinson, S. Davies, Metall. Mater. Trans. A 31 (2000) 2981–2987.

Google Scholar

[13] F.H. Froe, J. Hebeisen, In: Hot Isostatic Pressing Int. Conf., 1999, Beijing, (1999).

Google Scholar

[14] L. Wang, Z.B. Lang, H.P. Shi, Trans. Nonferrous Met. Soc. China 17 (2007) 639–643.

Google Scholar

[15] W.X. Yuan, J. Mei, V. Samarov, D. Seliverstov, X. Wu, J. Mater. Process. Technol. 182 (2007) 39–49.

Google Scholar

[16] Y. Xue, L.H. Lang, G.L. Bu, L. Li, Sci. Sinter. 43 (2011) 247–260.

Google Scholar

[17] Henke, T., Bambach, M., Hirt, G., 2013, Quantification of uncertainties in grain size predictions of a microstructure-based flow stress model and application to gear wheel forging, CIRP Annals - Manufacturing Technology, 62/1: 287-290.

DOI: 10.1016/j.cirp.2013.03.121

Google Scholar

[18] Behrens, B. A., 2008, Finite element analysis of die wear in hot forging processes, CIRP Annals - Manufacturing Technology, 57/1: 305-308.

DOI: 10.1016/j.cirp.2008.03.087

Google Scholar

[19] Bariani, P. P., Dal Negro, T., Bruschi, S., 2004, Testing and modelling of material response to deformation in bulk metal forming, CIRP Annals - Manufacturing Technology, 53/2: 573-595.

DOI: 10.1016/s0007-8506(07)60030-4

Google Scholar

[20] Geijselaers, H. J. M., Huétink, H., 2004, Thermo‐Mechanical Analysis with Phase Transformations, AIP Conference Proceedings, 712/1: 1508-1513.

Google Scholar

[21] Casotto, S., Pascon, F., Habraken, A. M., Bruschi, S., 2005, Thermo-mechanical-metallurgical model to predict geometrical distortions of rings during cooling phase after ring rolling operations, International Journal of Machine Tools & Manufacture, 45/6: 657-664.

DOI: 10.1016/j.ijmachtools.2004.10.007

Google Scholar

[22] Sha, W., Malinov, S. Titanium Alloys: Modelling of Microstructure, Properties and Applications: CRC Press; (2009).

Google Scholar

[23] E. Arzt, M.F. Ashby, E. Easterling, Practical Application of Hot Isostatic Pressing diagrams: Four Case Studies, Metallurgical Transaction A, Vol. 14A, Feb. 1983, pp.211-221.

DOI: 10.1007/bf02651618

Google Scholar

[24] M. J. Donachie, Titanium Handbook, A technical Guide, ASM ed, 2004, p.117.

Google Scholar

[25] - W. A. Backofen et al. ; Trans. ASM Quart. (1964) 57, 980.

Google Scholar

[26] W. A. Backofen et al. ; Trans. AIME (1967) 239, 1034.

Google Scholar

[27] - J. C. Huang et al. ; Scripta Mater. (1998) 39(1), 95 e rif.

Google Scholar

[28] - M. Mabuchi, K. Higashi; Scripta Mater. (1996) 34(12), 1893.

Google Scholar

[29] - E. W. Hart et al. ; Acta Metal. Mater. (1967) 15, 351.

Google Scholar

[30] - S. D. Dahlgren; Trans. AIME (1968) 242, 126.

Google Scholar

[31] W. B. Morrison; Trans. ASM (1968) 61, 423.

Google Scholar

[32] D. H. Avery et al. ; ibid. (1965) 58, 551.

Google Scholar

[33] - H. W. Hayden et al. ; Trans. ASM (1968) 61, 542.

Google Scholar

[34] - J. Headworth et al. ; J. Mat. Sci. (1971) 6, 1061.

Google Scholar

[35] M.J.R. Barboza, et Al., Materials Science and Engineering A 428 (2006) 319–326.

Google Scholar

[36] G. Malakondaiah, P.R. Rao, Acta Metall. 29 (1981) 1263–1275.

Google Scholar

[37] E. W. Collings, Materials Properties Handbook: Titanium Alloys, ASM, p.497.

Google Scholar

[38] Buffa G., Ducato A. , Fratini L., Numerical procedure for residual stresses prediction in friction stir welding, Finite Elements in Analysis and Design, 47(2011), 470–476.

DOI: 10.1016/j.finel.2010.12.018

Google Scholar

[39] Buffa G. , Ducato A., Fratini L. , Micari F., Numerical prediction of Biphasic Titanium Alloys Microstructure in Hot Forging Operations, 14th international conference of Metal Forming, (2012).

Google Scholar

[40] C. Testani, A. Squillace and L. Fratini, Beta-Forging of Ti6Al4V Titanium Alloy Powders consolidated by HIP: plastic flow and strain rate relation, Mat. Science Forum, Vol-783-786, pag. 613-618, (2014).

DOI: 10.4028/www.scientific.net/msf.783-786.613

Google Scholar