[1]
D Matthews, W Melfo, L Hviid D Farrugia P Yates, Optimising hydraulic descaler performance through improved monitoring and maintenance, AISTech2013, Iron & Steel Technology, Sept 2013, pp.80-88.
Google Scholar
[2]
N. Silk, The practical aspects of hydraulic descaling, Steel Times International, October 2001, pp.38-44.
Google Scholar
[3]
M. Krzyzanowski and J.H. Beynon, Modelling the boundary conditions for thermo-mechanical processing – oxide scale behaviour and composite effects, Modelling Simul. Mater. Sci. Eng. 8 (2000) 927-945.
DOI: 10.1088/0965-0393/8/6/312
Google Scholar
[4]
M. Krzyzanowski, J.H. Beynon and D. Farrugia, Oxide scale behaviour in high temperature metal processing, 2010, Wiley-VCH Verlag GMBH & Co KGaA.
Google Scholar
[5]
P. H Bolt, Understanding the properties of Oxide Scales on Hot Rolled Steel Strip, Steel Research International, 75 (6) (2004).
DOI: 10.1002/srin.200405786
Google Scholar
[6]
D. Farrugia et al., Innovative high temperature and mechanical descaling for long products (HIDES), RFCS Project Reference No. RFSR-CT-2009-00009 (2009-2012).
Google Scholar
[7]
C. Fedorciuc Onisa, D. Farrugia and M. Steer, Modelling of high pressure water descaling during long product rolling, Steel Research International, Special Edition Metal Forming Conference 2008, 79 (1).
Google Scholar
[8]
A.D. Richardson and D. Farrugia, Modelling of oxide scale growth and descaling on long product rolling mill, Rolling 2013 6th European Rolling Conference.
Google Scholar
[9]
Information on http: /www. hermetik. com.
Google Scholar
[10]
S.C. Kim et al, Method of setting nozzle intervals at the finishing scale breaker, KSME international Journal, Vol 17 N. 6 pp.870-878, (2003).
DOI: 10.1007/bf02983401
Google Scholar
[11]
J. Robertson and M.I. Manning, Limits to adherence of oxide scales, materials Science and technology vol 6 1990 pp.81-91.
Google Scholar
[12]
D. Tromans and J.A. Meech, Fracture toughness and surface energies of minerals, theoretical estimates for oxides, sulphides, silicates and halides, minerals Engineering 15 (2002) 1027-1041.
DOI: 10.1016/s0892-6875(02)00213-3
Google Scholar
[13]
M. Schutze, Stresses and decohesion of oxide scales, MST 858 vol4 407, (1998).
Google Scholar
[14]
S. Jupp, Fundamental modelling of friction during hot rolling of steel, PhD thesis, 2005, University of Sheffield.
Google Scholar
[15]
M. Schutze, Materials Science & Technology, 1988 (5), 4, 407-414.
Google Scholar