[1]
W.M. Thomas, E.D. Nichola, J.C. Needam, , M.G. Murch, P. Templesmith, C.J. Dawes, GB Patent Application No. 9125978-8 (1991).
Google Scholar
[2]
W.M. Thomas, E.D. Nichola, J.C. Needam, , M.G. Murch, P. Templesmith, C.J. Dawes, US Patent Application No. 5460317.P.L. (1995).
Google Scholar
[3]
R. Sakano, K. Murakami, K. Yamashita, T. Hyoe, M. Fuzimoto, M. Inuzuka, et al. Development of spot FSW robot system for automotive body members. In: Proceedings of the 3rd international symposium of friction stir welding, Kobe, Japan, September 27–28, (2001).
Google Scholar
[4]
T. Iwashita, Method and apparatus for joining. US patent, 6601751 B2 (2003).
Google Scholar
[5]
S. Lathabai, M.J. Painter, G.M.D. Cantin, V.K. Tyagi, Friction spot joining of an extruded Al–Mg–Si alloy, Scripta Mater. 55 (2006) 899–902.
DOI: 10.1016/j.scriptamat.2006.07.046
Google Scholar
[6]
P. Fanelli, F. Vivio, V. Vullo, Experimental and numerical characterization of Friction Stir Spot Welded joints, Engineering Fracture Mechanics 81 (2012) 17–25.
DOI: 10.1016/j.engfracmech.2011.07.009
Google Scholar
[7]
K.V. Jata, S.L. Semiatin. Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, Scripta Mater 43 (2000) 743–749.
DOI: 10.1016/s1359-6462(00)00480-2
Google Scholar
[8]
S.G. Arul, S.F. Miller, G.H. Kruger, T.Y. Pan, P.K. Mallick, A.J. Shih, Experimental study of joint performance in spot friction welding of 6111-T4 aluminum alloy, Sci. Technol. Weld. Join. 13 (2008) 629–637.
DOI: 10.1179/136217108x363900
Google Scholar
[9]
T. Freeney, S.R. Sharma, R.S. Mishra, Effect of Welding Parameters on Properties of 5052 Al Friction Stir Spot Welds, SAE Technical Series 2006-01-0969.
DOI: 10.4271/2006-01-0969
Google Scholar
[10]
M. Merzoug, M. Mazari, L. Berrahal, A. Imad, Parametric studies of the process of friction spot stir welding of aluminium 6060-T5 alloys, Mater. Des. 31(6) (2010) 3023–3028.
DOI: 10.1016/j.matdes.2009.12.029
Google Scholar
[11]
Y. Tozaki, Y. Uematsu, K. Tokaji, Effect of processing parameters on static strength of dissimilar friction stir spot welds between different aluminium alloys, Fatigue Fract. Eng. Mater. 30 (2007) 143–148.
DOI: 10.1111/j.1460-2695.2006.01096.x
Google Scholar
[12]
A. Gerlich, P. Su, G.J. Bendzsak, T.H. North, Numerical modeling of FSW spot welding: preliminary results, Friction Stir Welding and Processing III, TMS (2005).
DOI: 10.1179/174329306x77056
Google Scholar
[13]
M. Langerman, E. Kvalvik, Modeling plasticised aluminum flow and temperature fields during friction stir welding. In: Proc. of the 6th ASME–JSME Thermal Engineering Joint Conf. (2003).
Google Scholar
[14]
N. Rajamanickam, V. Balusamy, G. Madhusudhann Reddy, K. Natarajan, Effect of process parameters on thermal history and mechanical properties of friction stir welds, Materials and Design 30/7 (2009) 2726–2731.
DOI: 10.1016/j.matdes.2008.09.035
Google Scholar
[15]
Z. Zhang, H.W. Zhang, Numerical studies on controlling of process parameters in friction stir welding, Journal of Materials Processing Technology 209 (2008) 241–270.
DOI: 10.1016/j.jmatprotec.2008.01.044
Google Scholar
[16]
S. Mandal, J. Rice, A.A. Elmustafa, Experimental and numerical investigation of the plunge stage in friction stir welding, Journal of Materials Processing Technology 203 (2008) 411–9.
DOI: 10.1016/j.jmatprotec.2007.10.067
Google Scholar
[17]
O. Frigaard, O. Grong, O.T. Midling, A Process Model for Friction Stir Welding of age hardening aluminum alloys, Metallurgical and Materials Transactions A, 32A (2001) 1189-1200.
DOI: 10.1007/s11661-001-0128-4
Google Scholar