Extrusion Limit Diagram of Mg Alloy by Using Finite Element Method

Article Preview

Abstract:

In order to prevent the surface defect in the magnesium alloy extrusion process, it is important to set an appropriate process condition. The extrusion limit diagram is very useful to achieve the maximum extrusion speed without surface defect. In this study, the extrusion limit diagram for the magnesium alloy extrusion is constructed by using extrusion experiment and finite element analysis. For finite element analysis hot compression test is carried out to obtain the effective stress and stain curves according to the various strain rates and temperatures. The effectiveness of the constructed extrusion limit diagram is verified through the porthole extrusion experiment for producing the magnesium alloy bumper beam.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 622-623)

Pages:

581-587

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Li., H. Zhang, J. Zhou, J. Duszczyk, G. Y. Li, Z. H. Zhong, Numerical and experimental study on the extrusion through a porthole die to produce a hollow magnesium profile with longitudinal weld seams, Mater. Des., 29 (2008) 1190-1198.

DOI: 10.1016/j.matdes.2007.05.003

Google Scholar

[2] B. Kittilsen, Wrought magnesium alloys, in Proceedings of the Conference on Magnesium Technology, London (1986) 36-46.

Google Scholar

[3] R. Y. Lapovok, M. R. Barnett, C. H. J. Davies, Construction of extrusion limit diagram for AZ31 magnesium alloy by FE simulation, J. Mater. Process. Technol., 146 (2004) 408-414.

DOI: 10.1016/j.jmatprotec.2003.12.003

Google Scholar

[4] L. Li, J. Zhou, J. Duszczyk, Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion, J. Mater. Process. Technol., 172 (2006) 372-380.

DOI: 10.1016/j.jmatprotec.2005.09.021

Google Scholar

[5] S. Kobayashi, S. I. Oh, T. Altan, Metal Forming and The Finite-Element Method, Oxford University Press, New York, NY, USA, (1989).

Google Scholar

[6] H. H. Jo, S. K. Lee, C. S. Jung, B. M. Kim, A non-steady state FE analysis of Al tubes hot extrusion by a porthole die, J. Mater. Process. Technol., 173 (2006) 223-231.

DOI: 10.1016/j.jmatprotec.2005.03.039

Google Scholar

[7] G. Liu, J. Zhou, J. Duszczyk, FE analysis of metal flow and weld seam formation in a porthole die during the extrusion of a magnesium alloy into a square tube and the effect of ram speed on weld strength, J. Mater. Process. Technol., 200 (2008).

DOI: 10.1016/j.jmatprotec.2007.09.032

Google Scholar

[8] H. H. Jo, C. S. Jung , S. K. Lee, B. M. Kim, Determination of welding pressure in the non-steady state porthole die extrusion of improved Al7003 hollow section, J. Mater. Process. Technol., 139 (2003) 428-433.

DOI: 10.1016/s0924-0136(03)00518-1

Google Scholar

[9] Z. Zhanga, W. Houa, D. Huangc, and J. Xie, Mesh Reconstruction Technology of Welding Process in 3D FEM Simulation of Porthole Extrusion and Its Application, Procedia Eng., 36 (2012) 253-260.

DOI: 10.1016/j.proeng.2012.03.038

Google Scholar

[10] J. M. Lee, B. M. Kim, and C. G. Kang, Effects of chamber shapes of porthole die on elastic deformation and extrusion process in condenser tube extrusion, Mater. Des., 26(4) (2005) 327-336.

DOI: 10.1016/j.matdes.2004.06.007

Google Scholar