Comparison of Rigid-Plastic and Elastoplastic Finite Element Predictions of a Tensile Test of Cylindrical Specimens

Article Preview

Abstract:

In this paper, finite element predictions of a tensile test of cylindrical specimens obtained by rigid-plastic and elastoplastic finite element methods are compared in terms of tensile load-elongation curve and deformed shape. The flow stress curve used for this study is obtained by a scheme of obtaining flow stress at large strain from tensile test of cylindrical specimen using rigid-plastic finite element method. The two predictions are compared in a quantitative manner and discussed not only to find some similarity but also to distinguish the elastoplastic finite element method from the rigid-plastic finite element method.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 622-623)

Pages:

611-616

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bridgman P.W.: Studies in large flow and fracture, McGraw-Hill, New-York, (1952).

Google Scholar

[2] Zhang K.S.: Fracture prediction and necking analysis, Eng. Fract. Mech. 52 (1995) 575-582.

Google Scholar

[3] Komori K.: Simulation of tensile test by node separation method, J. Mater. Process. Technol. 125-126 (2002) 608-612.

DOI: 10.1016/s0924-0136(02)00352-7

Google Scholar

[4] Mirone G.: A new model for the elastoplastic characterization and the stress-strain determination on the necking section of a tensile specimen, Int. J. Solids. Struct. 41 (2004) 3545-3564.

DOI: 10.1016/j.ijsolstr.2004.02.011

Google Scholar

[5] Springmann M., Kuna M.: Identification of material parameters of the Gurson-Tvergaard-Needleman model by combined experimental and numerical techniques, Computational Materials Science 32 (2005) 544-552.

DOI: 10.1016/j.commatsci.2004.09.010

Google Scholar

[6] M. S. Joun, J. G. Eom, M. C. Lee: A new method for acquiring true stress-strain curves over a large range of strains using a tensile test and finite element method, Mechanics of Material 40 (2008) 586-593.

DOI: 10.1016/j.mechmat.2007.11.006

Google Scholar

[7] J. G. Eom, Y. H. Son, S. W. Jeong, S. T. Ahn, S. M. Jang, D. J. Yoon, M. S. Joun: Effect of strain hardening capability on plastic deformation behaviors of material during metal forming, Material and Design 54 (2014) 1010-1018.

DOI: 10.1016/j.matdes.2013.08.101

Google Scholar

[8] C. H. Lee, S. Kobayashi: New Solutions to Rigid-Plastic Deformation Problems Using a Matrix Method, JC. H. Lee, S. Kobayashi, J. Eng. Ind. 95 (1973) 865-873.

DOI: 10.1115/1.3438238

Google Scholar

[9] M. C. Lee, S. H. Chung, S. M. Jang ans M. S. Joun: Three-dimensional simulation of forging using hexahedral and tetrahedral elements, Finite. Elem. Anal. Des., 45 (2009) 745–754.

DOI: 10.1016/j.finel.2009.06.002

Google Scholar

[10] W. J. Chung, M. S. Joun: Elastoplastic module of AFDEX 2D, Proc. of 2013 KSTP Autumn Conference (2013) 57-60.

Google Scholar

[11] J. R. Hughes: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, New Jersey, (1987).

Google Scholar

[12] M. S. Joun: Case study on major defects in cold forging by finite element method (1) –Accuracy of forging simulation, KSTP Autumn conference (2011) 223-227.

Google Scholar

[13] M. S. Joun, I. S. Choi, J. G. Eom, M. C. Lee: Finite element analysis of tensile testing with emphasis on necking, Computational Materials Science 41 (2007) 63-69.

DOI: 10.1016/j.commatsci.2007.03.002

Google Scholar