[1]
C.G. Kang, J.H. Yoon, A finite-element analysis on the upsetting process of semi-solid aluminum material, J. Mater. Proc. Technol. 66(1997) 76-84.
DOI: 10.1016/s0924-0136(96)02498-3
Google Scholar
[2]
M. Koc, V. Vazquez, T. Witulski, T. Altan, Application of the finite element method to predict material flow and defects in the semi-solid forging of A356 aluminum alloys, J. Mater. Proc. Technol. 59(1996) 106-112.
DOI: 10.1016/0924-0136(96)02291-1
Google Scholar
[3]
R. Kopp, J. Choi, D. Neudenberger, Simple compression test and simulation of an Sn–15% Pb alloy in the semi-solid state, J. Mater. Proc. Technol. 135(2003) 317-323.
DOI: 10.1016/s0924-0136(02)00863-4
Google Scholar
[4]
M. Modigell, L. Pape, M. Hufschmidt, The rheological behaviour of metallic suspensions, Steel Research Int. 75 (2004) 506-512.
DOI: 10.1002/srin.200405803
Google Scholar
[5]
M. Hufschmidt, M. Modigell, J. Petera, Two-phase simulations as a development tool for thixoforming processes, Steel Research Int. 75(2004) 513-518.
DOI: 10.1002/srin.200405804
Google Scholar
[6]
Y. Hong, Z. Bingfen, Thixotropic deformation behavior of semi-solid AZ61 magnesium alloy during compression process, Materials Science & Eng. 132 (2006) 179-182.
DOI: 10.1016/j.mseb.2006.02.020
Google Scholar
[7]
L. Yalin, L. Miaoquan, H. Weichao, J. Haitao, Deformation behavior and microstructural evolution during the semi-solid compression of Al–4Cu–Mg alloy, Materials Charact. 54(2005) 423-430.
DOI: 10.1016/j.matchar.2005.01.013
Google Scholar
[8]
A. Alankar, A. Mary, Constitutive behavior of as-cast aluminum alloys AA3104, AA5182 and AA6111 at below solidus temperatures, Materials Science & Eng. 527 (2010) 7812-7820.
DOI: 10.1016/j.msea.2010.08.056
Google Scholar
[9]
Y.L. Jing, S. Sumio, Y. Jun, Microstructural evolution and flow stress of semi-solid type 304 stainless steel, J. Mater. Proc. Technol. 161(2005) 396-406.
DOI: 10.1016/j.jmatprotec.2004.07.063
Google Scholar
[10]
S. D. Jin, O.K. Hwan, Phase-field modelling of the thermo-mechanical properties of carbon steels, Acta Mat. 50 (2002) 2259-2268.
DOI: 10.1016/s1359-6454(02)00012-5
Google Scholar
[11]
D.J. Seol, Y.M. Won, T. Yeo, K.H. Oh, J.K. Park, C.H. Yim, High temperature deformation behaviour of carbon steel in the austenite and ferrite regions, ISIJ Int. 39 (1999) 91-98.
DOI: 10.2355/isijinternational.39.91
Google Scholar
[12]
H. Shimahara, R. Baadjou, R. Kopp, G. Hirt, Investigation of flow behaviour and microstructure on X210CrW12 steel in semi-solid state. Proc. 9th Conf. Semi-solid Alloys and Composites, Solid State Ph. 116-117 (2006) 189-192.
Google Scholar
[13]
M. Hojny, M. Glowacki, Computer modelling of deformation of steel samples with mushy zone, Steel Research Int. 79 (2008) 868-874.
DOI: 10.1002/srin.200806212
Google Scholar
[14]
M. Glowacki, M. Hojny, Inverse analysis applied for determination of strain-stress curves for steel deformed in semi-solid state, Inverse Problems in Science and Engineering, 17 (2009) 159-174.
DOI: 10.1080/17415970802082757
Google Scholar
[15]
M. Hojny, M. Glowacki, The physical and computer modeling of plastic deformation of low carbon steel in semi-solid state, Journal of Engineering Materials and Tech. 131 (2009) 041003-1–041003-7.
DOI: 10.1115/1.3184034
Google Scholar
[16]
M. Hojny, M. Glowacki, The methodology of strain – stress curves determination for steel in semi-solid state, Archives of Metallurgy and Mat. 54 (2009) 475-483.
Google Scholar
[17]
M. Hojny, M. Glowacki, Z. Malinowski, Computer aided methodology of strain-stress curve construction for steels deformed at extra high temperature, High Temperature Materials and Proc. 28 (2009) 245-252.
DOI: 10.1515/htmp.2009.28.4.245
Google Scholar
[18]
M. Hojny, M. Glowacki, Modeling of strain-stress relationship for carbon steel deformed at temperature exceeding hot rolling range, Journal of Engineering Materials and Tech. 133 (2011) 021008-1–021008-7.
DOI: 10.1115/1.4003106
Google Scholar