[1]
E. Ostergaard, Advanced Diemaking, (McGraw-Hill. Inc. USA, 1967).
Google Scholar
[2]
A. Forcellese, F. Gabrielli and R. Ruffini, Effect of the training set size on springback control by neural network in an air bending process, Journal of Materials Processing Technology, Vol. 80–81 (1998), p.493–500.
DOI: 10.1016/s0924-0136(98)00122-8
Google Scholar
[3]
R. Roy, Assessment of Sheet-Metal Bending Requirements Using Neural Networks, Neural Computing & Applications, Vol. 4 (1996), pp.35-43.
DOI: 10.1007/bf01413868
Google Scholar
[4]
Z. C. Lin and H. Chang, Application of fuzzy set theory and back propagation neural networks in progressive die design, Journal of manufacturing system, Vol. 15 (4) (1996), pp.268-281.
DOI: 10.1016/0278-6125(96)84552-3
Google Scholar
[5]
R. Hambli, Optimization of Blanking Processes Using Neural Network Simulation, The Arabian Journal for Science and Engineering, Vol. 30 (2005), pp.3-16.
Google Scholar
[6]
K. K. Pathak, S. Panthi, and N. Ramakrishnan, Application of Neural Network in Sheet Metal Bending Process, Defence Science Journal, Vol. 55 (2005), pp.125-131.
DOI: 10.14429/dsj.55.1976
Google Scholar
[7]
K. K. Pathak, V. K. Anand and G. Agnihotri, Prediction of Geometrical Instabilities in Deep Drawing in Artificial Neural Network, Journal of Engineering and Applied Sciences, Vol. 3(4) (2008), pp.344-349.
Google Scholar
[8]
W. Liu, Q. Liu, F. Ruana, Z. Liang and H. Qiu, Springback prediction for sheet metal forming based on GA-ANN technology, Journal of Materials Processing Technology, Vol. 187–188 (2007), p.227–231.
DOI: 10.1016/j.jmatprotec.2006.11.087
Google Scholar
[9]
M. Bozdemir and M. Golcu, Artificial neural network analysis of springback in V bending, journal of applied science, Vol. 8 (17) (2008), pp.3038-3043.
DOI: 10.3923/jas.2008.3038.3043
Google Scholar
[10]
F. Ruan, Y. Feng and W. Liu, Springback Prediction for Complex Sheet Metal Forming Parts Based on Genetic Neural Network, IEEE, Vol. 1 (2008), pp.157-161.
DOI: 10.1109/iita.2008.425
Google Scholar
[11]
H. Kurtaran, A novel approach for the prediction of bend allowance in air bending and comparison with other methods, International Journal of Advanced Manufacturing Technology, Vol. 37 (2008), p.486–495.
DOI: 10.1007/s00170-007-0987-y
Google Scholar
[12]
S. Sivasankaran, R. Narayanasamy, R. Jeyapaul and C. Loganathan, Modeling of wrinkling in deep drawing of different grades of annealed commercially pure aluminum sheets when drawn through a conical die using artificial neural network, Materials and Design, Vol. 30 (2009).
DOI: 10.1016/j.matdes.2009.01.020
Google Scholar
[13]
F. Djavanroodi, A. Pirgholi and E. Derakhshani, FEM and ANN Analysis in Fine-Blanking Process, Materials and Manufacturing Processes, Vol. 25 (2010), p.864–872.
DOI: 10.1080/10426910903367444
Google Scholar
[14]
Q. Li, M. Li, Q. Li and Y. Tian, Optimization Technology of Sheet Metal Deep Drawing with Variable Blank Holder Force, International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE), IEEE, (2010), pp.495-497.
DOI: 10.1109/cmce.2010.5610192
Google Scholar
[15]
M. Hanazono, H. Nishimura, H. Harada, Y. Marumo and T. Yamaguchi, Slide-bending Formation of Metallic Sheet Using Neural Network, International Conference on Control, Automation and Systems, IEEE, (2010), pp.34-37.
DOI: 10.1109/iccas.2010.5669949
Google Scholar
[16]
Z. Fu, J. Mo, L. Chen and W. Chen, Using genetic algorithm-back propagation neural network prediction and finite-element model simulation to optimize the process of multiple-step incremental air-bending forming of sheet metal, Materials and Design, Vol. 31 (2010).
DOI: 10.1016/j.matdes.2009.06.019
Google Scholar
[17]
H. S. Choi, B. M. Kim, K. J. Nam, S. H. Cha and C. G. Kang, Development of hot stamped center pillar using form die with channel type indirect blank holder, International Journal of Automotive Technology, Vol. 12 (2011), p.887−894.
DOI: 10.1007/s12239-011-0101-1
Google Scholar
[18]
V. Nasrollahi and B. Arezoo, Prediction of springback in sheet metal components with holes on the bending area, using experiments, finite element and neural networks, Materials and Design, Vol. 36 (2012), p.331–336.
DOI: 10.1016/j.matdes.2011.11.039
Google Scholar
[19]
Fethi Abbassia, Touhami Belhadja, Sébastien Mistoub and Ali Zghala, Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming, Materials and Design, Vol. 45 (2013), pp.605-615.
DOI: 10.1016/j.matdes.2012.09.032
Google Scholar