[1]
T. Hama, H. Takuda, Crystal-plasticity finite-element analysis of inelastic behavior during unloading in a magnesium alloy sheet, Int. J. Plast., 27(2011) 1072-1092.
DOI: 10.1016/j.ijplas.2010.11.004
Google Scholar
[2]
T. Hama, K. Ochi, N. Kitamura, H. Fujimoto, H. Takuda, Unloading behaviour of a magnesium alloy sheet under various loading paths, Steel Res. Int., Special Edition (2011) 1054-1059.
Google Scholar
[3]
T. Hama, N. Kitamura, H. Takuda, Effect of twinning and detwinning on inelastic behavior during unloading in a magnesium alloy sheet, Mater. Sci. Eng. A, 583 (2013), 232-241.
DOI: 10.1016/j.msea.2013.06.070
Google Scholar
[4]
G.E. Mann, T. Sumitomo, C.H. Caceres, J.R. Griffiths, Reversible plastic strain during cyclic loading–unloading of Mg and Mg–Zn alloys, Mater. Sci. Eng. A, 456 (2007), 138-146.
DOI: 10.1016/j.msea.2006.11.160
Google Scholar
[5]
T. Hama, Y. Kariyazaki, K. Ochi, H. Fujimoto, H. Takuda, Springback characteristics of Magnesium alloy AZ31B in draw-bending, Mater. Trans. 51 (2010) 685-693.
DOI: 10.2320/matertrans.p-m2010803
Google Scholar
[6]
X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, R.H. Wagoner, Hardening evolution of AZ31B Mg sheet, Int. J. Plast. 23(2007) 44-86.
DOI: 10.1016/j.ijplas.2006.03.005
Google Scholar
[7]
T. Hama, Y. Kariyazaki, N. Hosokawa, H. Fujimoto, H. Takuda, Work-hardening behaviors of magnesium alloy sheet during in-plane cyclic loading, Mater. Sci. Eng. A, 551 (2012) 209-217.
DOI: 10.1016/j.msea.2012.05.009
Google Scholar
[8]
T. Hama, H. Nagao, Y. Kuchinomachi, H. Takuda, Effect of pre-strain on work-hardening behavior of magnesium alloy sheets upon cyclic loading, Mater. Sci. Eng. A, 591(2014), 69-77.
DOI: 10.1016/j.msea.2013.10.083
Google Scholar
[9]
T. Hama, H. Takuda, Crystal plasticity finite-element simulation of deformation behavior in a magnesium alloy sheet considering detwinning, Steel Res. Int., Special Edition (2012) 1115-1118.
DOI: 10.4028/www.scientific.net/kem.554-557.71
Google Scholar
[10]
T. Hama, H. Takuda, Crystal plasticity finite-element simulation of work-hardening behavior in a magnesium alloy sheet under biaxial tension, Comput. Mater. Sci., 51 (2012) 156-164.
DOI: 10.1016/j.commatsci.2011.07.026
Google Scholar
[11]
S. Graff, W. Brocks, D. Steglich, Yielding of magnesium: From single crystal to polycrystalline aggregates, Int. J. Plast. 23(2007) 1957-(1978).
DOI: 10.1016/j.ijplas.2007.07.009
Google Scholar
[12]
A. Staroselsky, L. Anand, A constitutive model for hcp materials deforming by slip and twinning: Application to magnesium alloy AZ31B, Int. J. Plast. 19(2003) 1843-1864.
DOI: 10.1016/s0749-6419(03)00039-1
Google Scholar
[13]
H. Wang, P.D. Wu, C.N. Tome, J. Wang, A constitutive model of twinning and detwinning for hexagonal close packed polycrystals, Mater. Sci. Eng. A 555(2012), 93-98.
DOI: 10.1016/j.msea.2012.06.038
Google Scholar
[14]
P. Van Houtte, Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning, Acta Metall. 26(1978) 591-604.
DOI: 10.1016/0001-6160(78)90111-6
Google Scholar
[15]
T. Hama, T. Nagata, C. Teodosiu, A. Makinouchi, H. Takuda, Finite-element simulation of springback in sheet metal forming using local interpolation for tool surfaces, Int. J. Mech. Sci. 50 (2008) 175-192.
DOI: 10.1016/j.ijmecsci.2007.07.005
Google Scholar
[16]
T. Hama, N. Hosokawa, H. Takuda, Accurate parameter identification for crystal plasticity finite-element analysis in a magnesium alloy sheet, Proc. 9th NUMISHEET, (2014), 692-695.
DOI: 10.1063/1.4850066
Google Scholar
[17]
T. Hama, T. Mayama, H. Takuda, Deformation behavior of a magnesium alloy sheet with random crystallographic orientations, in press.
DOI: 10.4028/www.scientific.net/kem.611-612.27
Google Scholar