Work-Hardening Behavior upon Reverse Loading in a Rolled AZ31 Magnesium Alloy Sheet

Article Preview

Abstract:

The objective of this study was to understand the work-hardening behavior of a rolled AZ31 magnesium alloy sheet upon reverse loading. Firstly we carried out an in-plane compression-tension test of a rolled AZ31 magnesium alloy sheet with various compressive strains. The sigmoidal curve was exhibited during tension regardless of the amount of compressive strain, but a shape of the curve was clearly different depending on the compressive strain. To understand the mechanism of this difference, a crystal plasticity finite-element simulation was carried out. The simulation result showed that the above difference in the shape was owing to the difference in the activities of slip and twinning systems during tension depending on the compressive strain.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 622-623)

Pages:

603-608

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Hama, H. Takuda, Crystal-plasticity finite-element analysis of inelastic behavior during unloading in a magnesium alloy sheet, Int. J. Plast., 27(2011) 1072-1092.

DOI: 10.1016/j.ijplas.2010.11.004

Google Scholar

[2] T. Hama, K. Ochi, N. Kitamura, H. Fujimoto, H. Takuda, Unloading behaviour of a magnesium alloy sheet under various loading paths, Steel Res. Int., Special Edition (2011) 1054-1059.

Google Scholar

[3] T. Hama, N. Kitamura, H. Takuda, Effect of twinning and detwinning on inelastic behavior during unloading in a magnesium alloy sheet, Mater. Sci. Eng. A, 583 (2013), 232-241.

DOI: 10.1016/j.msea.2013.06.070

Google Scholar

[4] G.E. Mann, T. Sumitomo, C.H. Caceres, J.R. Griffiths, Reversible plastic strain during cyclic loading–unloading of Mg and Mg–Zn alloys, Mater. Sci. Eng. A, 456 (2007), 138-146.

DOI: 10.1016/j.msea.2006.11.160

Google Scholar

[5] T. Hama, Y. Kariyazaki, K. Ochi, H. Fujimoto, H. Takuda, Springback characteristics of Magnesium alloy AZ31B in draw-bending, Mater. Trans. 51 (2010) 685-693.

DOI: 10.2320/matertrans.p-m2010803

Google Scholar

[6] X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, R.H. Wagoner, Hardening evolution of AZ31B Mg sheet, Int. J. Plast. 23(2007) 44-86.

DOI: 10.1016/j.ijplas.2006.03.005

Google Scholar

[7] T. Hama, Y. Kariyazaki, N. Hosokawa, H. Fujimoto, H. Takuda, Work-hardening behaviors of magnesium alloy sheet during in-plane cyclic loading, Mater. Sci. Eng. A, 551 (2012) 209-217.

DOI: 10.1016/j.msea.2012.05.009

Google Scholar

[8] T. Hama, H. Nagao, Y. Kuchinomachi, H. Takuda, Effect of pre-strain on work-hardening behavior of magnesium alloy sheets upon cyclic loading, Mater. Sci. Eng. A, 591(2014), 69-77.

DOI: 10.1016/j.msea.2013.10.083

Google Scholar

[9] T. Hama, H. Takuda, Crystal plasticity finite-element simulation of deformation behavior in a magnesium alloy sheet considering detwinning, Steel Res. Int., Special Edition (2012) 1115-1118.

DOI: 10.4028/www.scientific.net/kem.554-557.71

Google Scholar

[10] T. Hama, H. Takuda, Crystal plasticity finite-element simulation of work-hardening behavior in a magnesium alloy sheet under biaxial tension, Comput. Mater. Sci., 51 (2012) 156-164.

DOI: 10.1016/j.commatsci.2011.07.026

Google Scholar

[11] S. Graff, W. Brocks, D. Steglich, Yielding of magnesium: From single crystal to polycrystalline aggregates, Int. J. Plast. 23(2007) 1957-(1978).

DOI: 10.1016/j.ijplas.2007.07.009

Google Scholar

[12] A. Staroselsky, L. Anand, A constitutive model for hcp materials deforming by slip and twinning: Application to magnesium alloy AZ31B, Int. J. Plast. 19(2003) 1843-1864.

DOI: 10.1016/s0749-6419(03)00039-1

Google Scholar

[13] H. Wang, P.D. Wu, C.N. Tome, J. Wang, A constitutive model of twinning and detwinning for hexagonal close packed polycrystals, Mater. Sci. Eng. A 555(2012), 93-98.

DOI: 10.1016/j.msea.2012.06.038

Google Scholar

[14] P. Van Houtte, Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning, Acta Metall. 26(1978) 591-604.

DOI: 10.1016/0001-6160(78)90111-6

Google Scholar

[15] T. Hama, T. Nagata, C. Teodosiu, A. Makinouchi, H. Takuda, Finite-element simulation of springback in sheet metal forming using local interpolation for tool surfaces, Int. J. Mech. Sci. 50 (2008) 175-192.

DOI: 10.1016/j.ijmecsci.2007.07.005

Google Scholar

[16] T. Hama, N. Hosokawa, H. Takuda, Accurate parameter identification for crystal plasticity finite-element analysis in a magnesium alloy sheet, Proc. 9th NUMISHEET, (2014), 692-695.

DOI: 10.1063/1.4850066

Google Scholar

[17] T. Hama, T. Mayama, H. Takuda, Deformation behavior of a magnesium alloy sheet with random crystallographic orientations, in press.

DOI: 10.4028/www.scientific.net/kem.611-612.27

Google Scholar