[1]
D. Szeliga, J. Kusiak, Ł. Rauch, Sensitivity analysis as Support for Design of Hot Rolling Technology of Dual Phase Steel Strips, Metal Forming 2012: proceedings of the 14th international conference on Metal Forming: September 16–19, 2012, Krakow, Poland, eds. Jan Kusiak, Janusz Majta, Danuta Szeliga. — Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, cop. 2012. (Steel Research International ; spec. ed. ), p.1275.
DOI: 10.1063/1.4806901
Google Scholar
[2]
K. Myczkowska, D. Szeliga, J. Kusiak, Sensitivity analysis of the cooling cycle for the DP steels, Rudy i Metale Nieżelazne, 56 (2011), pp.692-696, (in Polish).
Google Scholar
[3]
L. Breinman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Classification and regression trees, Chapman and Hall, (1993).
Google Scholar
[4]
J.R. Quinlan, Induction on Decision Trees, Machine Learning, Kluwer Academic Publishers, Boston, (1986).
Google Scholar
[5]
T. Hill, P. Lewicki, STATISTICS Methods and Applications. StatSoft, Tulsa, OK, 2007, WEB: http: /www. statsoft. com/textbook/stathome. html.
Google Scholar
[6]
G.V. Kass, An exploratory technique for investigatin large quantities of categorical data, Applied Statistics, 29, 1980, pp.119-127.
DOI: 10.2307/2986296
Google Scholar
[7]
K. Regulski, G. Rojek, M. Skóra, J. Kusiak, Data exploration approach in control of metal forming manufacturing chain : example of fasteners production, Metal Forming 2012 : proceedings of the 14th international conference on Metal Forming : September 16–19, 2012, Krakow, Poland, eds. Jan Kusiak, Janusz Majta, Danuta Szeliga. — Weinheim : Wiley-VCH Verlag GmbH & Co. KGaA, cop. 2012. — (Steel Research International ; spec. ed. ). — p.1319.
DOI: 10.1533/9780857096340.1.35
Google Scholar
[8]
K. Regulski, S. Kluska-Nawarecka, Knowledge integration computer tools and algorithms in the improvement of the production processes of cast-steel castings, Artificial Intelligence in the Knowledge and Information Systems, Instytut Odlewnictwa, Kraków, (2012).
Google Scholar
[9]
K. Regulski, Aspects of knowledge management in the production processes control in the context of the application of data mining, e-mentor ; ISSN 1731-6758. — 2012 nr 5 p.63–71.
Google Scholar
[10]
S. Kluska-Nawarecka, Z. Górny, B. Mrzygłód, D. Wilk-Kołodziejczyk, K. Regulski, Methods of development fuzzy logic driven decision-support models in copper alloys processing, Achieves of Foundry Engineering, Polish Academy of Sciences, No. 10 (2010).
DOI: 10.1515/afe-2015-0064
Google Scholar