An Enhanced Finite Element for Sequentially Linear Analysis Problems

Article Preview

Abstract:

Sequentially Linear Analysis (SLA) is an alternative method that avoids convergence problems derived from the use of classic nonlinear finite element analysis. Instead of using incremental iterative schemes (arc-length control, Newton-Raphson), SLA is a sequential procedure made by a series of linear analysis, able to capture nonlinear behavior, reducing Young Modulus, according to saw-tooth constitutive relation. In this paper an investigation above all the aspects of the methods will be presented using a new element suitable for the SLA: accuracy of the solutions and computational cost, i.e. the time needed to get to satisfactory conclusions of the analysis. In order to test the efficiency of the proposed element, numerical results hailed from different brittle problems, such as glass beam and an ideal masonry tower, are used.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-50

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Castellazzi, G., Gentilini, C., Nobile, L., Seismic vulnerability assessment of a historical church: Limit analysis and nonlinear finite element analysis, Advances in Civil Engineering, vol. 2013, Article ID 517454, 12 pages, 2013. doi: 10. 1155/2013/517454.

DOI: 10.1155/2013/517454

Google Scholar

[2] Rots, J.G. and Invernizzi,S., Regularized sequentially linear saw-tooth softening model, International Journal for Numerical and Analytical Methods in Geomechanics 28, 821 - 856 (2004).

DOI: 10.1002/nag.371

Google Scholar

[3] Rots, J.G. and Belletti, B. and Invernizzi, S., Robust modeling of RC structures with an eventby-event strategy, Engineering Fracture Mechanics 75, 590 - 614 (2008).

DOI: 10.1016/j.engfracmech.2007.03.027

Google Scholar

[4] Krysl, P. and Zhu, B. Locking-free continuum displacement finite elements with nodal integration. Int. J. Num. Meth. Engng. 76, 1020-1043 (2008).

DOI: 10.1002/nme.2354

Google Scholar

[5] Broccardo, M., Micheloni M. and Krysl, P. Assumed-deformation gradient finite elements with nodal integration for nearly incompressible large deformation analysis. Int. J. Num. Meth. Engng. 78, 1113-1134 (2009).

DOI: 10.1002/nme.2521

Google Scholar

[6] Krysl, P. and Kagey, H. Reformulation of nodally integrated continuum elements to attain insensitivity to distortion. Int. J. Num. Meth. Engng. 90, 805-818 (2012).

DOI: 10.1002/nme.3342

Google Scholar

[7] Castellazzi, G. and Krysl, P. Patch-averaged assumed strain finite elements for stress analysis. Int. J. Num. Meth. Engng. 90, 1618-1635 (2012).

DOI: 10.1002/nme.4264

Google Scholar

[8] Artioli, E., Castellazzi, G. and Krysl, P., Assumed-strain finite element technique for accurate modelling of plasticity problems. Computational Plasticity XII Fundamentals and Applications, Onate E, Owen D, Peric D, Suarez B (eds. ), Barcelona, Spain, 3-5 September, (2013).

Google Scholar

[9] Artioli, E., Castellazzi, G. and Krysl, P., Assumed-strain nodally integrated hexahedral finite element formulation for elastoplastic applications, Int. J. Numer. Meth. Engng , to appear NMENov-13-0693.

DOI: 10.1002/nme.4723

Google Scholar

[10] Invernizzi,S. and Trovato,D. and Hendriks,M. A. N. and Van de Graaf,A. V., Sequentially linear modelling of local snap-back in extremely brittle structures, Engineering Structures 33 1617 1625 (2011).

DOI: 10.1016/j.engstruct.2011.01.031

Google Scholar

[11] Hendriks, M.A.N. and Rots, J. G, Sequentially linear versus nonlinear analysis of RC structures, Engineering Computations 30, 792 - 801 (2013).

DOI: 10.1108/ec-may-2012-0105

Google Scholar

[12] Di Tommaso, A. et al. Dynamic identification and seismic behaviour of the Ghirlandina Tower in Modena, Geotecnical Engineering, Napoli, (2013).

Google Scholar

[13] Di Tommaso, A. Lancellotta, R., Focacci, F., Romaro F., Uno studio sulla stabilit`a della torre Ghirlandina, nel vol. La torre Ghirlandina a cura di R. Cadignani, L. Sossella Editore, Roma, (2010).

DOI: 10.1201/b14895-40

Google Scholar

[14] D'Ambrisi, A., Mariani, V., Mezzi, M., Seismic assessment of a historical masonry tower with nonlinear static and dynamic analyses tuned on ambient vibration tests, Engineering Structures, 36, 210-219 (2011).

DOI: 10.1016/j.engstruct.2011.12.009

Google Scholar