Improved GZO Thin Film Properties with SiOx Buffer Layer by Atmospheric Pressure Plasma Deposition

Article Preview

Abstract:

The Ga-doped zinc-oxides (GZO) as the transparency conductive oxide is the good candidate for substituting ITO. The buffer layer SiOx could improve the quality of GZO thin film. The atmospheric pressure plasma multi-jets (APPMJ) system with three jets was designed and applied for SiOx deposition process. The deposition thickness of three jets was 2.5 times higher than that of single jet, and the uniformity was less than 5% for the area 100mm2. GZO thin film with SiOx buffer layer had 3% decreases in resistivity compared to GZO thin film due to the increasing of mobility. The SiOx/glass fabricated APPMJ system will be a good alternative substrate to bare glass for producing high quality GZO film for advanced electro-optic applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

196-200

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Bhosle, A. Tiwari, and J. Narayan, Electrical properties of transparent and conducting Ga doped ZnO, Journal of Applied Physics. 100 (2006) 033713.

DOI: 10.1063/1.2218466

Google Scholar

[2] Y. Suzaki, S. Ejima, T. Shikama, S. Azuma, O. Tanaka, T. Kajitani, and H. Koinuma, Deposition of ZnO film using an open-air cold plasma generator, Thin Solid Films. 506-507 (2006) 155-158.

DOI: 10.1016/j.tsf.2005.08.166

Google Scholar

[3] V. Khranovskyy, U. Grossner, O. Nilsen, V. Lazorenko, G. V. Lashkarev, B. G. Svensson, and R. Yakimova, Structural and morphological properties of ZnO: Ga thin films, Thin Solid Films. 515 (2006) 472-476.

DOI: 10.1016/j.tsf.2005.12.269

Google Scholar

[4] X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, and H. Ma, Preparation and properties of ZnO: Ga films prepared by r. f. magnetron sputtering at low temperature, Applied Surface Science. 239 (2005) 222-226.

DOI: 10.1016/j.apsusc.2004.05.266

Google Scholar

[5] K.M. Chang, S.H. Huang, C.J. Wu, W.L. Lin, W.C. Chen, C.W. Chi, J.W. Lin, C.C. Chang, Transparent conductive indium-doped zinc oxide films prepared by atmospheric pressure plasma jet, Thin solid films. 519 (2011) 5114-5117.

DOI: 10.1016/j.tsf.2011.01.156

Google Scholar

[6] L.H. Xu, X.Y. Li, S. Hua, Y.L. Chen and F. Xu, Influence of SiO2 buffer layer on the crystalline quality and photoluminescence of ZnO thin films, Journal of applied Physics. 276 (2011) 012051.

DOI: 10.1088/1742-6596/276/1/012051

Google Scholar

[7] R. M. S. Martins, N. Schell, M. Beckers, K. K. Mahesh, R. J. C. Silva, F. M. B. Fernandes, Growth of sputter-deposited Ni-Ti thin films: effect of a SiO2 buffer layer, Applied physics A. 84 (2006) 285-289.

DOI: 10.1007/s00339-006-3626-9

Google Scholar

[8] W. C. Shin and M. S. Wu, Growth of ZnO films on GaAs substrates with a SiO2 buffer layer by RF planar magnetron sputtering for surface acoustic wave applications, Journal of crystal growth. 137 (1994) 319-325.

DOI: 10.1016/0022-0248(94)90968-7

Google Scholar

[9] Z. N. Yu, J. J. Zhao, F. Xia, Z. J. Lin, J. Leng and W. Xue, Enhanced electrical stability of flexible indium tin oxide films prepared on stripe SiO2 buffer layer-coated polymer substrates by magnetron sputtering, Applied surface science. 257 (2011).

DOI: 10.1016/j.apsusc.2010.12.064

Google Scholar

[10] F. Massines, C.S. Bournet, F. Fanelli, N. Naudé, and N. Gherardi, Atmospheric Pressure Low Temperature Direct Plasma Technology: Status and Challenges for Thin Film Deposition, Plasma Processes and Polymers. 9 (2012) 1041–1073.

DOI: 10.1002/ppap.201200029

Google Scholar

[11] M. H. Han, J. H. Noh, T. I. Lee, J. H. Choi, K. W. Park, H. S. Hwang, K. M. Song, and H. K. Baik, High-Rate SiO2 Deposition by Oxygen Cold Arc Plasma Jet at Atmospheric Pressure, Plasma Processes and Polymers. 5 (2008) 861-866.

DOI: 10.1002/ppap.200800061

Google Scholar