[1]
K. Meskouris, Structural dynamics, models, methods, examples. Berlin: Ernst & Sohn, (2000).
Google Scholar
[2]
D. Foti, M. Debernardis, V. Paparella. Structural Safety Control of Masonry Buildings: Non-Linear Static Seismic Analysis with a Non-Linear Shear Strength Criterion. In: B.H.V. Topping, (Editor). Proc. of the Eleventh International Conference on Computational Structures Technology. Dubrovnik, 4-7 sept. 2012, STIRLINGSHIRE: Civil-Comp Press, ISBN: 978-1-905088-54-6, doi: 10. 4203/ccp. 99.
DOI: 10.4203/ccp.99.123
Google Scholar
[3]
V. Gattulli, F. Potenza, F. Graziosi, F. Federici, A. Colarieti, M. Faccio. Distributed structural monitoring for a smart city in a seismic area. Key Engineering Materials 01/(2014).
DOI: 10.4028/www.scientific.net/kem.628.123
Google Scholar
[4]
D. Foti. Non-Destructive Techniques and Monitoring for the Evolutive Damage Detection of an Ancient Masonry Structure. Key Engineering Materials, (2014).
DOI: 10.4028/www.scientific.net/kem.628.168
Google Scholar
[5]
D. Foti, A. Romanazzi. Experimental analysis of fiber-reinforced mortar for walls in rectified brick blocks /Analisi sperimentale di malte fibrorinforzate per pareti in blocchi di laterizio rettificati, C+CA Ceramurgia + Ceramica Acta, Anno XXXXI, 41(2) (2011).
Google Scholar
[6]
S. Ivorra, D. Foti, D. Bru, and F.J. Baeza (2013). Dynamic Behavior of a Pedestrian Bridge in Alicante (Spain). J. Perform. Constr. Facil., 10. 1061/(ASCE) CF. 1943-5509. 0000556 (Dec. 7, 2013).
DOI: 10.1061/(asce)cf.1943-5509.0000556
Google Scholar
[7]
M. Lepidi, V. Gattulli, D. Foti. Swinging-bell resonances and their cancellation identified by dynamical testing in a modern bell tower. Engineering Structures, 31(7) (2009) 1486–1500.
DOI: 10.1016/j.engstruct.2009.02.014
Google Scholar
[8]
D. Foti, V. Gattulli, F. Potenza. Output-only modal identification in unfavourable testing conditions and finite element model updating of a seismically damaged building. Computer-Aided Civil And Infrastructure Engineering, 2014, Online ISSN: 1467-8667, doi: 10. 1111/mice. 12071.
DOI: 10.1111/mice.12071
Google Scholar
[9]
D. Foti, S. Ivorra, D. Bru, G. Dimaggio. Dynamic Identification of a Pedestrian Bridge using OMA: Previous and Post-Reinforcing. In: B.H.V. Topping, (Editor). Proceedings of the Eleventh International Conference on Computational Structures Technology. Dubrovnik, 4-7 sept. 2012, STIRLINGSHIRE: Civil-Comp Press, ISBN: 978-1-905088-54-6, doi: 10. 4203/ccp. 9. 9.
DOI: 10.4203/ccp.99.180
Google Scholar
[10]
M. Diaferio, D. Foti, V. Sepe. Dynamic Identification of the Tower of the Provincial Administration Building, Bari, Italy. in: Proceedings of the Eleventh International Conference on Civil, Structural and Environmental Engineering Computing, Malta, 18-21 Sept. 2007, paper n. 2.
DOI: 10.4203/ccp.86.2
Google Scholar
[11]
M. Diaferio, D. Foti, M. Mongelli, N.I. Giannoccaro, P. Andersen. Operational Modal Analysis of a Historical Tower in Bari. in: Conference Proceedings of the Society for Experimental Mechanics Series, IMAC XXIX,. 7 (2011).
DOI: 10.1007/978-1-4419-9316-8_31
Google Scholar
[12]
D. Foti, M. Diaferio, N.I. Giannoccaro, Mongelli Michele. Ambient Vibration Testing, Dynamic Identification and Model Updating of a Historic Tower. NDT&E International, 47 (2012) 88-95, doi: 10. 1016/ j. ndteint. 2011. 11. 009.
DOI: 10.1016/j.ndteint.2011.11.009
Google Scholar
[13]
D. Foti, S. Ivorra, M.F. Sabbà. Dynamic investigation of an ancient masonry bell tower with operational modal analysis: A non-destructive experimental technique to obtain the dynamic characteristics of a structure. Open Construction and Building Technology Journal, 6 (2012).
DOI: 10.2174/1874836801206010384
Google Scholar
[14]
D. Foti, M. Diaferio, N.I. Giannoccaro. Non-Destructive Monitoring of an Old Masonry Clock Tower with Forced and Environmental Actions. Proc. International Forum Le Vie dei Mercanti", Editor La Scuola di Pitagora, in "Fabbrica della Conoscenza, 12-14 June 2014, ID 111.
DOI: 10.1109/eesms.2014.6923265
Google Scholar
[15]
M. Diaferio, D. Foti, N.I. Giannoccaro. Identification of the modal properties of a building of the Greek heritage. Key Engineering Materials, (2014).
DOI: 10.4028/www.scientific.net/kem.628.150
Google Scholar
[16]
D. Foti. Identification of the Modal Properties of a Medieval Tower Next to a Landslide, Proc. International Forum Le Vie dei Mercanti", Editor La Scuola di Pitagora, in "Fabbrica della Conoscenza, 12-14 June 2014, ID 184.
Google Scholar
[17]
M. Erdik, Y. Fahjan, O. Ozel, H. Alcik, A. Mert, M. Gul. Istanbul earthquake rapid response and the early warning system, Bull Earthquake Eng. 1 (2003) 157–63.
DOI: 10.1023/a:1024813612271
Google Scholar
[18]
H. Kanamori, Real-time seismology and earthquake damage mitigation. Annu Rev Earth Planet Sci. 33 (2005) 195–214.
DOI: 10.1146/annurev.earth.33.092203.122626
Google Scholar
[19]
Y.M. Wu, H. Kanamori, Experiment on an onsite early warning method for the Taiwan early warning system, Bull Seismol Soc. Am. 95 (2005) 347–53.
DOI: 10.1785/0120040097
Google Scholar
[20]
Y.M. Wu, H. Kanamori, Rapid assessment of damaging potential of earthquakes in Taiwan from the beginning of P waves. Bull Seismol Soc. Am. 95 (2005) 1181–5.
Google Scholar
[21]
H. Kanamori, E. Hauksson, T. Heaton, Real-time seismology and earthquake hazard mitigation. Nature 390 (1997) 461–4.
DOI: 10.1038/37280
Google Scholar
[22]
F. Wenzel, M. Baur, F. Fiedrich, C. Ionescu, M. Oncescu, Potential of earthquake early warning system. Nat. Hazards 23 (2001) 407–16.
DOI: 10.1023/a:1011180302201
Google Scholar
[23]
Y. Nakamura, Urgent Earthquake Detection and Alarm System, now and future, In: 13th world conference on earthquake engineering, Vancouver, BC, Canada, Aug. 1–6, (2004).
Google Scholar
[24]
J.M. Espinosa-Aranda, A. Jimenez, G. Ibarrola, F. Alcantar, A. Aguilar, Mexico City seismic alert system. Seismol Res Lett. 66 (1995) 42–53.
DOI: 10.1785/gssrl.66.6.42
Google Scholar
[25]
Y.M. Wu, T.L. Teng, T.C. Shin, N.C. Hsiao. Relationship between peak ground acceleration, peak ground velocity, and intensity in Taiwan. Bull Seismol Soc Am. 93 (2003) 386–96.
DOI: 10.1785/0120020097
Google Scholar
[26]
Y.M. Wu, H. Kanamori, Development of an earthquake early warning system using real-time strong motion signals, Sensors, 8 (2008) 1–9.
DOI: 10.3390/s8010001
Google Scholar
[27]
Y.M. Wu, H. Kanamori, Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake. Earth Planets Space 60 (2008) 155–60.
DOI: 10.1186/bf03352778
Google Scholar
[28]
M. Erdik, M. Demircioglu, K. Sesetyan, E. Duruka, B. Siyahi, Earthquake hazard in Marmara region, Turkey. Soil Dyn Earthquake Eng, 24 (2004) 605–31.
DOI: 10.1016/j.soildyn.2004.04.003
Google Scholar
[29]
H. Alcik, O. Ozel, N. Apaydin, M. Erdik, A study on warning algorithms for Istanbul earthquake early warning system. Geophys Res Lett, 36 (2009) 366-69.
DOI: 10.1029/2008gl036659
Google Scholar
[30]
R. Tomás, J. García-Barba, M. Cano, M.P. Sanabria, S. Ivorra, J. Duro, G. Herrera, Subsidence damage assessment of a Gothic church using differential interferometry and field data. Structural Health Monitoring, 11 (6) (2012) 751-762.
DOI: 10.1177/1475921712451953
Google Scholar
[31]
S. Ivorra, F.J. Pallarés, J.M. Adam, R. Tomás. An evaluation of the incidence of soil subsidence on the dynamic behaviour of a Gothic bell tower. Engineering Structures, 32(8) (2010) 2318-2325.
DOI: 10.1016/j.engstruct.2010.04.007
Google Scholar
[32]
L. Facchini, M. Betti, P. Biagini. Neural network based modal identification of structural systems through output-only measurement. Computers and Structures. 2014(138): 183-194.
DOI: 10.1016/j.compstruc.2014.01.013
Google Scholar
[33]
L. Carnimeo, A. Giaquinto, On Spatial Novelty Detection via Image Contrast Enhancement using Cellular Nonlinear Networks, WSEAS Trans. on Information Science & Appl. 1 (2004) 1747-51.
Google Scholar
[34]
L. Carnimeo, A. Giaquinto, Cellular Neural Networks for Obstacle Detection in Stereo Vision Imagery, Cellular Neural Networks: Theory and Appl., I(8), New York, Nova Science Publishers, (2004), 173-180.
Google Scholar
[35]
S.H. Strogatz, Exploring complex networks. Nature, 410 (2001) 268-276.
Google Scholar
[36]
L. Carnimeo, M. Dassisti, An approach to model the European Interchange Energy Network as a Small World Net. Recent Researches in Automatic Control and Electronics, (2012) 159-164.
Google Scholar
[37]
M. Dassisti, L. Carnimeo, Net modelling of energy mix among European Countries: A proposal for ruling new scenarios, Energy, 39 (2012) 100-111.
DOI: 10.1016/j.energy.2011.07.006
Google Scholar
[38]
M. Dassisti, L. Carnimeo, A small-world methodology of analysis of interchange energy-networks: The European behaviour in the economical crisis. Energy Policy, 63 (2013) 887-899.
DOI: 10.1016/j.enpol.2013.09.015
Google Scholar