On Modeling an Innovative Monitoring Network for Protecting and Managing Cultural Heritage from Risk Events

Article Preview

Abstract:

In this paper the model of an Innovative Monitoring Network involving properly connected nodes to develop an Information and Communication Technology (ICT) solution for preventive maintenance of historical centres from early warnings is proposed. It is well known that the protection of historical centres generally goes from a large-scale monitoring to a local one and it could be supported by a unique ICT solution. More in detail, the models of a virtually organized monitoring system could enable the implementation of automated analyses by presenting various alert levels. An adequate ICT solution tool would allow to define a monitoring network for a shared processing of data and results. Thus, a possible retrofit solution could be planned for pilot cases shared among the nodes of the network on the basis of a suitable procedure utilizing a retrofit catalogue. The final objective would consist in providing a model of an innovative tool to identify hazards, damages and possible retrofit solutions for historical centres, assuring an easy early warning support for stakeholders. The action could proactively target the needs and requirements of users, such as decision makers responsible for damage mitigation and safeguarding of cultural heritage assets.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

243-249

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Meskouris, Structural dynamics, models, methods, examples. Berlin: Ernst & Sohn, (2000).

Google Scholar

[2] D. Foti, M. Debernardis, V. Paparella. Structural Safety Control of Masonry Buildings: Non-Linear Static Seismic Analysis with a Non-Linear Shear Strength Criterion. In: B.H.V. Topping, (Editor). Proc. of the Eleventh International Conference on Computational Structures Technology. Dubrovnik, 4-7 sept. 2012, STIRLINGSHIRE: Civil-Comp Press, ISBN: 978-1-905088-54-6, doi: 10. 4203/ccp. 99.

DOI: 10.4203/ccp.99.123

Google Scholar

[3] V. Gattulli, F. Potenza, F. Graziosi, F. Federici, A. Colarieti, M. Faccio. Distributed structural monitoring for a smart city in a seismic area. Key Engineering Materials 01/(2014).

DOI: 10.4028/www.scientific.net/kem.628.123

Google Scholar

[4] D. Foti. Non-Destructive Techniques and Monitoring for the Evolutive Damage Detection of an Ancient Masonry Structure. Key Engineering Materials, (2014).

DOI: 10.4028/www.scientific.net/kem.628.168

Google Scholar

[5] D. Foti, A. Romanazzi. Experimental analysis of fiber-reinforced mortar for walls in rectified brick blocks /Analisi sperimentale di malte fibrorinforzate per pareti in blocchi di laterizio rettificati, C+CA Ceramurgia + Ceramica Acta, Anno XXXXI, 41(2) (2011).

Google Scholar

[6] S. Ivorra, D. Foti, D. Bru, and F.J. Baeza (2013). Dynamic Behavior of a Pedestrian Bridge in Alicante (Spain). J. Perform. Constr. Facil., 10. 1061/(ASCE) CF. 1943-5509. 0000556 (Dec. 7, 2013).

DOI: 10.1061/(asce)cf.1943-5509.0000556

Google Scholar

[7] M. Lepidi, V. Gattulli, D. Foti. Swinging-bell resonances and their cancellation identified by dynamical testing in a modern bell tower. Engineering Structures, 31(7) (2009) 1486–1500.

DOI: 10.1016/j.engstruct.2009.02.014

Google Scholar

[8] D. Foti, V. Gattulli, F. Potenza. Output-only modal identification in unfavourable testing conditions and finite element model updating of a seismically damaged building. Computer-Aided Civil And Infrastructure Engineering, 2014, Online ISSN: 1467-8667, doi: 10. 1111/mice. 12071.

DOI: 10.1111/mice.12071

Google Scholar

[9] D. Foti, S. Ivorra, D. Bru, G. Dimaggio. Dynamic Identification of a Pedestrian Bridge using OMA: Previous and Post-Reinforcing. In: B.H.V. Topping, (Editor). Proceedings of the Eleventh International Conference on Computational Structures Technology. Dubrovnik, 4-7 sept. 2012, STIRLINGSHIRE: Civil-Comp Press, ISBN: 978-1-905088-54-6, doi: 10. 4203/ccp. 9. 9.

DOI: 10.4203/ccp.99.180

Google Scholar

[10] M. Diaferio, D. Foti, V. Sepe. Dynamic Identification of the Tower of the Provincial Administration Building, Bari, Italy. in: Proceedings of the Eleventh International Conference on Civil, Structural and Environmental Engineering Computing, Malta, 18-21 Sept. 2007, paper n. 2.

DOI: 10.4203/ccp.86.2

Google Scholar

[11] M. Diaferio, D. Foti, M. Mongelli, N.I. Giannoccaro, P. Andersen. Operational Modal Analysis of a Historical Tower in Bari. in: Conference Proceedings of the Society for Experimental Mechanics Series, IMAC XXIX,. 7 (2011).

DOI: 10.1007/978-1-4419-9316-8_31

Google Scholar

[12] D. Foti, M. Diaferio, N.I. Giannoccaro, Mongelli Michele. Ambient Vibration Testing, Dynamic Identification and Model Updating of a Historic Tower. NDT&E International, 47 (2012) 88-95, doi: 10. 1016/ j. ndteint. 2011. 11. 009.

DOI: 10.1016/j.ndteint.2011.11.009

Google Scholar

[13] D. Foti, S. Ivorra, M.F. Sabbà. Dynamic investigation of an ancient masonry bell tower with operational modal analysis: A non-destructive experimental technique to obtain the dynamic characteristics of a structure. Open Construction and Building Technology Journal, 6 (2012).

DOI: 10.2174/1874836801206010384

Google Scholar

[14] D. Foti, M. Diaferio, N.I. Giannoccaro. Non-Destructive Monitoring of an Old Masonry Clock Tower with Forced and Environmental Actions. Proc. International Forum Le Vie dei Mercanti", Editor La Scuola di Pitagora, in "Fabbrica della Conoscenza, 12-14 June 2014, ID 111.

DOI: 10.1109/eesms.2014.6923265

Google Scholar

[15] M. Diaferio, D. Foti, N.I. Giannoccaro. Identification of the modal properties of a building of the Greek heritage. Key Engineering Materials, (2014).

DOI: 10.4028/www.scientific.net/kem.628.150

Google Scholar

[16] D. Foti. Identification of the Modal Properties of a Medieval Tower Next to a Landslide, Proc. International Forum Le Vie dei Mercanti", Editor La Scuola di Pitagora, in "Fabbrica della Conoscenza, 12-14 June 2014, ID 184.

Google Scholar

[17] M. Erdik, Y. Fahjan, O. Ozel, H. Alcik, A. Mert, M. Gul. Istanbul earthquake rapid response and the early warning system, Bull Earthquake Eng. 1 (2003) 157–63.

DOI: 10.1023/a:1024813612271

Google Scholar

[18] H. Kanamori, Real-time seismology and earthquake damage mitigation. Annu Rev Earth Planet Sci. 33 (2005) 195–214.

DOI: 10.1146/annurev.earth.33.092203.122626

Google Scholar

[19] Y.M. Wu, H. Kanamori, Experiment on an onsite early warning method for the Taiwan early warning system, Bull Seismol Soc. Am. 95 (2005) 347–53.

DOI: 10.1785/0120040097

Google Scholar

[20] Y.M. Wu, H. Kanamori, Rapid assessment of damaging potential of earthquakes in Taiwan from the beginning of P waves. Bull Seismol Soc. Am. 95 (2005) 1181–5.

Google Scholar

[21] H. Kanamori, E. Hauksson, T. Heaton, Real-time seismology and earthquake hazard mitigation. Nature 390 (1997) 461–4.

DOI: 10.1038/37280

Google Scholar

[22] F. Wenzel, M. Baur, F. Fiedrich, C. Ionescu, M. Oncescu, Potential of earthquake early warning system. Nat. Hazards 23 (2001) 407–16.

DOI: 10.1023/a:1011180302201

Google Scholar

[23] Y. Nakamura, Urgent Earthquake Detection and Alarm System, now and future, In: 13th world conference on earthquake engineering, Vancouver, BC, Canada, Aug. 1–6, (2004).

Google Scholar

[24] J.M. Espinosa-Aranda, A. Jimenez, G. Ibarrola, F. Alcantar, A. Aguilar, Mexico City seismic alert system. Seismol Res Lett. 66 (1995) 42–53.

DOI: 10.1785/gssrl.66.6.42

Google Scholar

[25] Y.M. Wu, T.L. Teng, T.C. Shin, N.C. Hsiao. Relationship between peak ground acceleration, peak ground velocity, and intensity in Taiwan. Bull Seismol Soc Am. 93 (2003) 386–96.

DOI: 10.1785/0120020097

Google Scholar

[26] Y.M. Wu, H. Kanamori, Development of an earthquake early warning system using real-time strong motion signals, Sensors, 8 (2008) 1–9.

DOI: 10.3390/s8010001

Google Scholar

[27] Y.M. Wu, H. Kanamori, Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake. Earth Planets Space 60 (2008) 155–60.

DOI: 10.1186/bf03352778

Google Scholar

[28] M. Erdik, M. Demircioglu, K. Sesetyan, E. Duruka, B. Siyahi, Earthquake hazard in Marmara region, Turkey. Soil Dyn Earthquake Eng, 24 (2004) 605–31.

DOI: 10.1016/j.soildyn.2004.04.003

Google Scholar

[29] H. Alcik, O. Ozel, N. Apaydin, M. Erdik, A study on warning algorithms for Istanbul earthquake early warning system. Geophys Res Lett, 36 (2009) 366-69.

DOI: 10.1029/2008gl036659

Google Scholar

[30] R. Tomás, J. García-Barba, M. Cano, M.P. Sanabria, S. Ivorra, J. Duro, G. Herrera, Subsidence damage assessment of a Gothic church using differential interferometry and field data. Structural Health Monitoring, 11 (6) (2012) 751-762.

DOI: 10.1177/1475921712451953

Google Scholar

[31] S. Ivorra, F.J. Pallarés, J.M. Adam, R. Tomás. An evaluation of the incidence of soil subsidence on the dynamic behaviour of a Gothic bell tower. Engineering Structures, 32(8) (2010) 2318-2325.

DOI: 10.1016/j.engstruct.2010.04.007

Google Scholar

[32] L. Facchini, M. Betti, P. Biagini. Neural network based modal identification of structural systems through output-only measurement. Computers and Structures. 2014(138): 183-194.

DOI: 10.1016/j.compstruc.2014.01.013

Google Scholar

[33] L. Carnimeo, A. Giaquinto, On Spatial Novelty Detection via Image Contrast Enhancement using Cellular Nonlinear Networks, WSEAS Trans. on Information Science & Appl. 1 (2004) 1747-51.

Google Scholar

[34] L. Carnimeo, A. Giaquinto, Cellular Neural Networks for Obstacle Detection in Stereo Vision Imagery, Cellular Neural Networks: Theory and Appl., I(8), New York, Nova Science Publishers, (2004), 173-180.

Google Scholar

[35] S.H. Strogatz, Exploring complex networks. Nature, 410 (2001) 268-276.

Google Scholar

[36] L. Carnimeo, M. Dassisti, An approach to model the European Interchange Energy Network as a Small World Net. Recent Researches in Automatic Control and Electronics, (2012) 159-164.

Google Scholar

[37] M. Dassisti, L. Carnimeo, Net modelling of energy mix among European Countries: A proposal for ruling new scenarios, Energy, 39 (2012) 100-111.

DOI: 10.1016/j.energy.2011.07.006

Google Scholar

[38] M. Dassisti, L. Carnimeo, A small-world methodology of analysis of interchange energy-networks: The European behaviour in the economical crisis. Energy Policy, 63 (2013) 887-899.

DOI: 10.1016/j.enpol.2013.09.015

Google Scholar