[1]
G. Rastiello, C. Boulay, S. Dal Pont, J.L. Tailhan, P. Rossi Real-time water permeability evolution of a localized crack in concrete under loading [J] Cement and Concrete Research 56 (2014) 20-28.
DOI: 10.1016/j.cemconres.2013.09.010
Google Scholar
[2]
M. Ismail, A. Toumi, R. François, R. Gagné, Effect of crack opening on the local diffusion of chloride in cracked mortar samples[J] Cement and Concrete Research 38 (2008) 1106-1111.
DOI: 10.1016/j.cemconres.2008.03.009
Google Scholar
[3]
Ippei Maruyama, Hiroshi Sasano Strain and crack distribution in concrete during drying[J] Materials and Structures 47 (2014): 517-532.
DOI: 10.1617/s11527-013-0076-7
Google Scholar
[4]
Bisschop J, van Mier GM Effect of aggregates on drying shrinkage micro-cracking in cement-based composites [J] Materials and Structures 47 (2002) 35: 453-461.
DOI: 10.1007/bf02483132
Google Scholar
[5]
Grassl P, Wong HS, Buenfeld NR Influence of aggregate size and volume fraction on shrinkage induced micro-cracking of concrete and mortar [J] Cement and Concrete Research 40(2010): 85-93.
DOI: 10.1016/j.cemconres.2009.09.012
Google Scholar
[6]
Idiart , A, Bisschop J, Caballero A, Lur P A numerical and experimental study of aggregate-induced shrinkage cracking in cementitious composites. [J] Cement and Concrete Research 42(2012): 272-281.
DOI: 10.1016/j.cemconres.2011.09.013
Google Scholar
[7]
Lura P, Jensen OM, Weiss J Cracking in cement paste induced by autogenous shrinkage [J] Materials and Structures 42(2009): 1089-1099.
DOI: 10.1617/s11527-008-9445-z
Google Scholar
[8]
S. Grasberger, G. Meschke, Thermo-hydro-mechanical degradation of concrete: from coupled 3D material modelling to durability-oriented multifield structural analyses [J] Materials and Structures. 37 (2004) 244-256.
DOI: 10.1007/bf02480633
Google Scholar
[9]
K.G. Papakonstantinou, M. Shinozuka Probabilistic model for steel corrosion in reinforced concrete structures of large dimensions considering crack effects[J] Engineering Structures 57 (2013) 306-326.
DOI: 10.1016/j.engstruct.2013.06.038
Google Scholar
[10]
C. Boulay, S. Dal Pont, P. Belin, Real-time evolution of electrical resistance in cracking concrete, Cement and Concrete Research. 39 (2009) 825-831.
DOI: 10.1016/j.cemconres.2009.06.003
Google Scholar
[11]
Ping Duan, Wei Chen, Juntao Ma, Zhonghe Shui Influence of layered double hydroxides on microstructure and carbonation resistance of sulphoaluminate cement concrete [J] Construction and Building Materials 48 (2013) 601-609.
DOI: 10.1016/j.conbuildmat.2013.07.049
Google Scholar
[12]
Winnefeld Frank, Lothenbach Barbara. Hydration of calcium sulfoaluminate cements experimental findings and thermodynamic modeling [J] Cement and Concrete Research 2010; 40(8): 1239-1247.
DOI: 10.1016/j.cemconres.2009.08.014
Google Scholar
[13]
Liao YS, Wei XS, Li GW. Early hydration of calcium sulfoaluminate cement through electrical resistivity measurement and microstructure investigations. [J] Construction Build Material 2011; 25(4): 1572-1579.
DOI: 10.1016/j.conbuildmat.2010.09.042
Google Scholar
[14]
Wei Y, Yao W, Xing X, Wu M. Quantitative evaluation of hydrated cement modified by silica fume using QXRD, Al MAS NMR, TG-DSC and selective dissolution techniques [J] Construction Build Material 2012; 36(1): 925-932.
DOI: 10.1016/j.conbuildmat.2012.06.075
Google Scholar
[15]
E. Gallucci, X. Zhang, K.L. Scrivener Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H) [J] Cement and Concrete Research 53 (2013) 185-195.
DOI: 10.1016/j.cemconres.2013.06.008
Google Scholar
[16]
Nielsen EP, Herfort D, Geiker MR. Binding of chloride and alkalis in Portland cement systems. [J] Cement and Concrete Research 2005; 35: 117-123.
DOI: 10.1016/j.cemconres.2004.05.026
Google Scholar