[1]
L. Bertolini, B. Elsener, P. Pedeferri, E. Redaelli, R. Polder, Corrosion of steel in concrete: prevention, diagnosis, repair, 2nd edition. Weinheim: Wiley-VCH; (2013).
DOI: 10.1002/9783527651696
Google Scholar
[2]
Z. Yang, H. Fischer, R. Polder, Synthesis and characterisation of modified hydrotalcites and their ion exchange characteristics in chloride-rich simulated concrete pore solution, Cem. Concr. Compos. 479 (2014) 87-93.
DOI: 10.1016/j.cemconcomp.2013.03.008
Google Scholar
[3]
Z. Yang, H. Fischer, J. Cerezo, J.M.C. Mol, R. Polder, Aminobenzoate modified Mg-Al hydrotalcites as a novel smart additive of reinforced concrete for anticorrosion applications, Constr Bldg Mater. 47 (2013) 1436-1443.
DOI: 10.1016/j.conbuildmat.2013.06.049
Google Scholar
[4]
Z. Yang, H. Fischer, R. Polder, Modified hydrotalcites as a new emerging class of smart additive of reinforced concrete for anti-corrosion applications: a literature review, Mater Corros. 64 (2013) 1066-1074.
DOI: 10.1002/maco.201206915
Google Scholar
[5]
G.K. Glass, N.R. Buenfeld, The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete, Corros Sci. 42 (2000) 329-344.
DOI: 10.1016/s0010-938x(99)00083-9
Google Scholar
[6]
O. Kayali, M.S.H. Khan, M.S. Ahmed, The role of hydrotalcite in chloride binding and corrosion protection in concretes with ground granulated blast furnace slag, Cem Concr Compos. 34 (2012) 936-945.
DOI: 10.1016/j.cemconcomp.2012.04.009
Google Scholar
[7]
NT Build 492, Concrete, mortar and cement-based repair materials: chloride migration coefficient from non-steady-state migration experiments. NordTest, Espoo, (1999).
Google Scholar
[8]
NT Build 443, Concrete hardened: accelerated chloride penetration. NordTest, Espoo, (1995).
Google Scholar
[9]
EN 14629, Products and systems for the protection and repair of concrete structures-Test methods-determination of chloride content in hardened concrete. European standard, (2007).
DOI: 10.3403/30091523u
Google Scholar