[1]
M. Li, C.X. Qian, H. Wang, et al. Mechanical Properties of High-Strength Concrete after Fire. Journal of the Chinese Ceramic Society, Vol. 31, 2002, pp.1116-1120.
Google Scholar
[2]
P. Kalifa, F.D. Menneteau and D. Quenard. Spalling and Pore Pressure in HPC at High Temperatures. Cement and Concrete Research, Vol. 30, 2000, p.1915-(1927).
DOI: 10.1016/s0008-8846(00)00384-7
Google Scholar
[3]
P. Kalifa, G. Chene and C. Galle. High-Temperature Behaviour of HPC with Polypropylene Fibres from Spalling to Microstructure. Cement and Concrete Research, Vol. 31, 2001, pp.1487-1499.
DOI: 10.1016/s0008-8846(01)00596-8
Google Scholar
[4]
S.H. Bian, G.F. Peng, Z.L. Zhao, et al. Effects of Moisture Contents and Fibers on Properties of High Performance Concrete at High Temperatures. Journal of Building Materials, Vol. 8, 2005, pp.321-327.
Google Scholar
[5]
X. Liu, Y. Yuan, G. Ye, et al. Investigation on The Mechanism of Explosive Spalling of High Performance Concrete at Elevated Temperatures. China Civil Engineering Journal, Vol. 41, 2008, pp.61-67.
Google Scholar
[6]
J.Z. Xiao, H. Falkner. On Residual Strength of High-Performance Concrete with and without Polypropylene Fibres at Elevated Temperatures. Fire Safety Journal, Vol. 41, 2006, pp.115-121.
DOI: 10.1016/j.firesaf.2005.11.004
Google Scholar
[7]
N. Buratti, C. Mazzotti, M. Savoia. Post-Cracking Behaviour of Steel and Macro-Synthetic Fibre Reinforced Concretes. Construction and Building Materials, Vol. 25, 2011, pp.2713-2722.
DOI: 10.1016/j.conbuildmat.2010.12.022
Google Scholar
[8]
A. Bilodeau, V.K.R. Kodur, G.C. Hoff. Optimization of The Type and Amount of Polypropylene Fibres for Preventing The Spalling of Lightweight Concrete Subjected to Hydrocarbon Fire. Cement and Concrete Composites, Vol. 26, 2004, pp.163-174.
DOI: 10.1016/s0958-9465(03)00085-4
Google Scholar
[9]
E.T. Dawood, M. Ramli. Mechanical Properties of High Strength Flowing Concrete with Hybrid Fibers. Construction and Building Materials, Vol. 28, 2012, pp.193-200.
DOI: 10.1016/j.conbuildmat.2011.08.057
Google Scholar
[10]
J.Z. Lai, W. Sun, H.X. Dong. Mechanical Performance of Synthetic Structure Fiber Reinforced Concrete and Bond Behaviour of Fiber-Matrix Interface. Industrial Construction, Vol. 36, 2006, pp.94-97.
Google Scholar
[11]
Y.D. Shao, J.H. Li, H. Guo. Research on Mechanical Properties and Strengthening Mechanism of Polypropylene Synthetic Macro-Fiber Reinforced Concrete. Concrete, Vol. 270, 2012, pp.52-54.
Google Scholar
[12]
Y.C. Cai, B.Q. Dai. Experimental Research on Frost Resistance Performance of Modified Polypropylene Fiber Concrete. Concrete, Vol. 249, 2010, pp.63-64.
Google Scholar
[13]
F.S. Dou, L.L. Du, B.Q. Dai. Experimental Research on Carbonization of Modified Polypropylene Fiber Concrete. Industrial Construction, Vol. 40, 2010, pp.790-792.
Google Scholar
[14]
J.S. Zhu, Y.P. Song. Research on Fatigue Damage of Concrete under Biaxial Compressive Loading using Ultrasonic Velocity Method. Chinese Journal of Rock Mechanics and Engineering, Vol. 23, 2004, pp.2230-2234.
Google Scholar