Mechanical and Adiabatic Properties of Silica Aerogel Doped with TiO2 Nanowire

Article Preview

Abstract:

A novel silica aerogel insulation composite was prepared by using TiO2 nanowires as modifier via sol-gel processing and supercritical drying methods in order to address issues of the poor mechanical and the infrared shading performance of silica aerogel. The effects of TiO2 nanowire content on the mechanical and adiabatic performance were investigated by X-Ray diffraction (XRD), nitrogen adsorption (BET), field emission scanning electron microscopy (FESEM), static compression test and thermal analysis. The results show that TiO2 nanowire reinforced aerogels had great thermal insulation properties, while high surface area, low density and mechanical strength were retained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

336-339

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Baetens, B.P. Jelle, A. Gustavsen, Aerogel insulation for building applications: A state-of-the-art review, Energy and Buildings, 43 (2011) 761-769.

DOI: 10.1016/j.enbuild.2010.12.012

Google Scholar

[2] M. Koebel, A. Rigacci, P. Achard, Aerogel-based thermal superinsulation: an overview, J. Sol-Gel Sci. Technol., 63 (2012) 315-339.

DOI: 10.1007/s10971-012-2792-9

Google Scholar

[3] J.L. Gurav, I. -K. Jung, H. -H. Park, E.S. Kang, D.Y. Nadargi, Silica Aerogel: Synthesis and Applications, J. Nanomater., 1 (2010) 1-12.

Google Scholar

[4] A.C. Pierre, G.M. Pajonk, Chemistry of Aerogels and Their Applications, Chem. Rev., 102 (2002) 4243-4265.

Google Scholar

[5] X.P. Lu, P. Wang, D. Buttner, Thermal transport in opacified monolithic silica aerogels, High Temperature-High Pressure, 23 (1991) 431-434.

Google Scholar

[6] K. Fujita, J. Konishi, K. Nakanishi, Strong light scattering in macroporous TiO2 monoliths induced by phase separation, Appl. Phys. Lett., 85 (2004) 5595-5597.

DOI: 10.1063/1.1823596

Google Scholar

[7] J. Zhu, J. Xie, X. Lu, D. Jiang, Synthesis and characterization of superhydrophobic silica and silica/titania aerogels by sol-gel method at ambient pressure, Colloids and Surfaces A: Physicochem. Eng. Aspects, 342 (2009) 97-101.

DOI: 10.1016/j.colsurfa.2009.04.016

Google Scholar

[8] J. Feng, D. Chen, W. Ni, S. Yang, Z. Hu, Study of IR absorption properties of fumed silica-opacifier composites, J. Non-Cryst. Solids, 356 (2010) 480-483.

DOI: 10.1016/j.jnoncrysol.2009.12.015

Google Scholar

[9] Q. Wang, Z.H. Wen, J.H. Li, A New Hybrid Supercapacitor Fabricated with Carbon Nanotubes Cathode and TiO2-B Nanowires Anode, Adv. Funct. Mater., 16 (2006) 2141-2146.

DOI: 10.1002/adfm.200500937

Google Scholar

[10] A.R. Armstrong, G. Armstrong, J. Canales, R. García, P.G. Bruce, Lithium-Ion Intercalation into TiO2-B Nanowires, Adv. Mater., 17 (2005) 862-865.

DOI: 10.1002/adma.200400795

Google Scholar

[11] C.J. Brinker, K. Keefer, D. Schaefer, C. Ashley, Sol-Gel transition in simple silicates, J. Non-Cryst. Solids, 48 (1982) 47-64.

DOI: 10.1016/0022-3093(82)90245-9

Google Scholar

[12] S. Cui, W. Cheng, X. Shen, M. Fan, A. Russell, Z. Wu, X. Yi, Mesoporous amine-modified SiO2 aerogel: a potential CO2 sorbent, Environ. Sci., 4 (2011) 2070-(2074).

DOI: 10.1039/c0ee00442a

Google Scholar