Mortars with Phase Change Materials: Contribute to Sustainable Construction

Article Preview

Abstract:

In a society with a high growth rate and increased standards of comfort arises the need to minimize the currently high energy consumption by taking advantage of renewable energy sources. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. This paper aims to contribute to the study of mortars incorporating PCM. The main characteristics of the material and the mortars doped with PCM, will be presented. It also aims to clarify the differences in the physical and mechanical characteristics of mortars doped with different types of PCM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-13

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Diamanti, M. Ormellese, M. Pedeferri, Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide, Cement and Concrete Research. 38 (2008) 1349-1353.

DOI: 10.1016/j.cemconres.2008.07.003

Google Scholar

[2] Y. Zhang, G. Zhou, K. Lin, K. Zhang, H. Di, Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook, Build Environ. 42 (2007) 2197-2209.

DOI: 10.1016/j.buildenv.2006.07.023

Google Scholar

[3] B. Zalba, J. Marín, L. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl Therm Eng. 23 (2003) 251-283.

DOI: 10.1016/s1359-4311(02)00192-8

Google Scholar

[4] M. Schmid, in Heat management with Phase Change Material. Seminário Argamassas Funcionais para uma Construção Sustentável, Aveiro (2011).

Google Scholar

[5] L. Cabeza, A. Castell, C. Barreneche, A. Gracia, A. Fernández, Materials used as PCM in thermal energy storage in buildings: A review, Renew Sustainable Energy Reviews. 15 (2011) 1675-1695.

DOI: 10.1016/j.rser.2010.11.018

Google Scholar

[6] V. Tyagi, S. Kaushik, S. Tyagi, T. Akiyama, Development of phase change materials based microencapsulated technology for buildings: A review, Renew Sustainable Energy Reviews. 15 (2011) 1373-1391.

DOI: 10.1016/j.rser.2010.10.006

Google Scholar

[7] E. Halawa, F. Bruno, W. Saman, Numerical analysis of a PCM thermal storage system with varying wall temperature, Energy Conversion and Management. 46 (2005) 2592-2604.

DOI: 10.1016/j.enconman.2004.11.003

Google Scholar

[8] Z. Liu, C. Ma, Numerical analysis of melting with constant heat flux heating in a thermal energy storage system, Energy Conversion and Management. 43 (2002) 2521-2538.

DOI: 10.1016/s0196-8904(01)00190-x

Google Scholar

[9] A. Sharma, V. Tyagi, C. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renew Sustainable Energy Reviews. 13 (2009) 318-345.

DOI: 10.1016/j.rser.2007.10.005

Google Scholar

[10] C. Castellon, E. Gunther, H. Mehling, Determination of the enthalpy of PCM as a function of temperature using a heat-flux DSC, A study of different measurement procedures and their accuracy, Journal of Energy Research. 32 (2008) 1258-1265.

DOI: 10.1002/er.1443

Google Scholar

[11] E. Gunther, E. Hiebler, H Mehling, Enthalpy of phase change materials as a function of temperature: required accuracy and suitable measurement methods, International Journal of Thermophysics. 30 (2009) 1257-1269.

DOI: 10.1007/s10765-009-0641-z

Google Scholar

[12] C. Barreneche, A. Solé, L. Miróa, I. Martorella, I. Fernández, L. Cabeza, Study on differential scanning calorimetry analysis with two operation modes and organic and inorganic phase change material (PCM), Thermochimica Acta. 553 (2013) 23-26.

DOI: 10.1016/j.tca.2012.11.027

Google Scholar

[13] E. Günther, S. Hiebler,H. Mehling, Determination of the heat storage capacity of PCM and PCM-objects as a function of temperature in: ECOSTOCK, international conference on thermal energy storage (2006).

Google Scholar

[14] A. Khudhair, M. Farid, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials, Energy Convers Management. 45 (2004) 263-275.

DOI: 10.1016/s0196-8904(03)00131-6

Google Scholar

[15] A. Athienitis, C. Liu, D. Hawes, D. Banu, D. Feldman, Investigation of the Thermal Performance of a Passive Solar Test-Room with Wall Latent Heat Storage, Build Environ. 32 (1997) 405-410.

DOI: 10.1016/s0360-1323(97)00009-7

Google Scholar

[16] L. Shilei, Z. Neng, F. Guohui, Impact of Phase Change Wall Room on Indoor Thermal Environment in winter, Energy Build. 38 (2006) 18-24.

DOI: 10.1016/j.enbuild.2005.02.007

Google Scholar

[17] K. Darkwa, P. O'Callaghan, D. Tetlow, Phase-change drywalls in a passive-solar building, Appl Energy. 83 (2006) 425-435.

DOI: 10.1016/j.apenergy.2005.05.001

Google Scholar

[18] P. Schossig, H. Henning, S. Gschwander, T. Haussmann, Micro-encapsulated Phase Change Materials Integrated Into Construction Materials, Sol Energy Mater Sol Cells. 89 (2005) 297-306.

DOI: 10.1016/j.solmat.2005.01.017

Google Scholar

[19] M. Ahmad, A. Bontemps, H. Sallée, D. Quenard, Thermal Testing and Numerical Simulation of a Prototype Cell Using Light Wallboards Coupling Vacuum Isolation Panels and Phase Change Material, Energy Build. 38 (2006) 673-681.

DOI: 10.1016/j.enbuild.2005.11.002

Google Scholar

[20] K. Lin, Y. Zhang, X. Xu, H. Di, R. Yang, P. Qin, Experimental Study of Under-Floor Electric Heating System with Shape-Stabilized PCM Plates, Energy Build. 37 (2005) 215-220.

DOI: 10.1016/j.enbuild.2004.06.017

Google Scholar

[21] A. Entrop, H. Brouwers, A. Reinders, Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in concrete floors and to save energy in Dutch houses, Solar Energy. 85 (2011) 1007-1020.

DOI: 10.1016/j.solener.2011.02.017

Google Scholar

[22] X. Jin, X. Zhang, Thermal analysis of a double layer phase change material floor, Applied Thermal Engineering, Appl Therm Eng. 31 (2011) 1576-1581.

DOI: 10.1016/j.applthermaleng.2011.01.023

Google Scholar

[23] M. Koschenz, B. Lehmann, Development of a Thermally Activated Ceiling Panel with PCM for Application in Lightweight and Retrofitted Buildings, Energy Build. 36 (2004) 567-578.

DOI: 10.1016/j.enbuild.2004.01.029

Google Scholar

[24] A. Pasupathy, L. Athanasius, R. Velraj, R. Seeniraj, Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management, Appl Therm Eng. 28 (2008).

DOI: 10.1016/j.applthermaleng.2007.04.016

Google Scholar