[1]
M. Diamanti, M. Ormellese, M. Pedeferri, Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide, Cement and Concrete Research. 38 (2008) 1349-1353.
DOI: 10.1016/j.cemconres.2008.07.003
Google Scholar
[2]
Y. Zhang, G. Zhou, K. Lin, K. Zhang, H. Di, Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook, Build Environ. 42 (2007) 2197-2209.
DOI: 10.1016/j.buildenv.2006.07.023
Google Scholar
[3]
B. Zalba, J. Marín, L. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl Therm Eng. 23 (2003) 251-283.
DOI: 10.1016/s1359-4311(02)00192-8
Google Scholar
[4]
M. Schmid, in Heat management with Phase Change Material. Seminário Argamassas Funcionais para uma Construção Sustentável, Aveiro (2011).
Google Scholar
[5]
L. Cabeza, A. Castell, C. Barreneche, A. Gracia, A. Fernández, Materials used as PCM in thermal energy storage in buildings: A review, Renew Sustainable Energy Reviews. 15 (2011) 1675-1695.
DOI: 10.1016/j.rser.2010.11.018
Google Scholar
[6]
V. Tyagi, S. Kaushik, S. Tyagi, T. Akiyama, Development of phase change materials based microencapsulated technology for buildings: A review, Renew Sustainable Energy Reviews. 15 (2011) 1373-1391.
DOI: 10.1016/j.rser.2010.10.006
Google Scholar
[7]
E. Halawa, F. Bruno, W. Saman, Numerical analysis of a PCM thermal storage system with varying wall temperature, Energy Conversion and Management. 46 (2005) 2592-2604.
DOI: 10.1016/j.enconman.2004.11.003
Google Scholar
[8]
Z. Liu, C. Ma, Numerical analysis of melting with constant heat flux heating in a thermal energy storage system, Energy Conversion and Management. 43 (2002) 2521-2538.
DOI: 10.1016/s0196-8904(01)00190-x
Google Scholar
[9]
A. Sharma, V. Tyagi, C. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renew Sustainable Energy Reviews. 13 (2009) 318-345.
DOI: 10.1016/j.rser.2007.10.005
Google Scholar
[10]
C. Castellon, E. Gunther, H. Mehling, Determination of the enthalpy of PCM as a function of temperature using a heat-flux DSC, A study of different measurement procedures and their accuracy, Journal of Energy Research. 32 (2008) 1258-1265.
DOI: 10.1002/er.1443
Google Scholar
[11]
E. Gunther, E. Hiebler, H Mehling, Enthalpy of phase change materials as a function of temperature: required accuracy and suitable measurement methods, International Journal of Thermophysics. 30 (2009) 1257-1269.
DOI: 10.1007/s10765-009-0641-z
Google Scholar
[12]
C. Barreneche, A. Solé, L. Miróa, I. Martorella, I. Fernández, L. Cabeza, Study on differential scanning calorimetry analysis with two operation modes and organic and inorganic phase change material (PCM), Thermochimica Acta. 553 (2013) 23-26.
DOI: 10.1016/j.tca.2012.11.027
Google Scholar
[13]
E. Günther, S. Hiebler,H. Mehling, Determination of the heat storage capacity of PCM and PCM-objects as a function of temperature in: ECOSTOCK, international conference on thermal energy storage (2006).
Google Scholar
[14]
A. Khudhair, M. Farid, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials, Energy Convers Management. 45 (2004) 263-275.
DOI: 10.1016/s0196-8904(03)00131-6
Google Scholar
[15]
A. Athienitis, C. Liu, D. Hawes, D. Banu, D. Feldman, Investigation of the Thermal Performance of a Passive Solar Test-Room with Wall Latent Heat Storage, Build Environ. 32 (1997) 405-410.
DOI: 10.1016/s0360-1323(97)00009-7
Google Scholar
[16]
L. Shilei, Z. Neng, F. Guohui, Impact of Phase Change Wall Room on Indoor Thermal Environment in winter, Energy Build. 38 (2006) 18-24.
DOI: 10.1016/j.enbuild.2005.02.007
Google Scholar
[17]
K. Darkwa, P. O'Callaghan, D. Tetlow, Phase-change drywalls in a passive-solar building, Appl Energy. 83 (2006) 425-435.
DOI: 10.1016/j.apenergy.2005.05.001
Google Scholar
[18]
P. Schossig, H. Henning, S. Gschwander, T. Haussmann, Micro-encapsulated Phase Change Materials Integrated Into Construction Materials, Sol Energy Mater Sol Cells. 89 (2005) 297-306.
DOI: 10.1016/j.solmat.2005.01.017
Google Scholar
[19]
M. Ahmad, A. Bontemps, H. Sallée, D. Quenard, Thermal Testing and Numerical Simulation of a Prototype Cell Using Light Wallboards Coupling Vacuum Isolation Panels and Phase Change Material, Energy Build. 38 (2006) 673-681.
DOI: 10.1016/j.enbuild.2005.11.002
Google Scholar
[20]
K. Lin, Y. Zhang, X. Xu, H. Di, R. Yang, P. Qin, Experimental Study of Under-Floor Electric Heating System with Shape-Stabilized PCM Plates, Energy Build. 37 (2005) 215-220.
DOI: 10.1016/j.enbuild.2004.06.017
Google Scholar
[21]
A. Entrop, H. Brouwers, A. Reinders, Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in concrete floors and to save energy in Dutch houses, Solar Energy. 85 (2011) 1007-1020.
DOI: 10.1016/j.solener.2011.02.017
Google Scholar
[22]
X. Jin, X. Zhang, Thermal analysis of a double layer phase change material floor, Applied Thermal Engineering, Appl Therm Eng. 31 (2011) 1576-1581.
DOI: 10.1016/j.applthermaleng.2011.01.023
Google Scholar
[23]
M. Koschenz, B. Lehmann, Development of a Thermally Activated Ceiling Panel with PCM for Application in Lightweight and Retrofitted Buildings, Energy Build. 36 (2004) 567-578.
DOI: 10.1016/j.enbuild.2004.01.029
Google Scholar
[24]
A. Pasupathy, L. Athanasius, R. Velraj, R. Seeniraj, Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management, Appl Therm Eng. 28 (2008).
DOI: 10.1016/j.applthermaleng.2007.04.016
Google Scholar