Effect of Treatment of Sisal Fiber on Morphology, Mechanical Properties and Fiber-Cement Bond Strength

Article Preview

Abstract:

The dimensional instability of vegetable fibers due to hygroscopicity results in a gradual loss of adherence in cement based composites which, when in service, are submitted to a natural variation of humidity. Such an effect reduces the contribution of the fiber as a reinforcement and can cause the early rupture of the material. In this work, a treatment of the sisal fibers is performed with the applying of wetting-drying cycles in order to alter their crystalline structure and improve the dimensional stability of the fiber to withstand the variation of humidity: 6, 10, 20, 30 and 34 cycles were applied in order to evaluate the effect on the properties of fiber; a tensile test, the morphological characterization (MEV) and the evaluation of the chemical structure of fiber were carried out. The effect of the treatment on fiber-matrix behavior was evaluated using the pull-out test. Embedded lengths of 16, 20, 30, 40 and 44 mm were defined through a factorial design and used in the test. It is verified that the use of 10 wetting-drying cycles causes less damage to the tensile strength and the elastic modulus of the fiber and contributes to a better adherence with the matrix, with an increase of up to 23 % compared with the untreated fiber. The statistical analysis of the interaction effect between the studied factors, using 2K factorial design with central composite design, indicates that the number of cycles can be decreased when using a longer length of the embedded fiber.Keywords: wetting-drying cycles, pull out test, tensile strength..

You might also be interested in these eBooks

Info:

Periodical:

Pages:

410-420

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.E. Gram. Natural fibre concrete roofing. In: NATURAL FIBRE REINFORCED CEMENT AND CONCRETE, V. 5, Anais… Edited by R.N. Swamy, Blackie and Son Ltd, London, 1988: 257-285.

Google Scholar

[2] H.E. Gram. Durability of natural fibers in concrete, Swedish cement and concrete research institute, Research Fo. 1: 83, Stockolm. 1983, 255p.

Google Scholar

[3] R.D. Toledo Filho, K. Ghavami, G.L. England and K. Scrinever. Development of vegetable fibre-mortar composites of improved durability. Cement And Concrete Composites. v. 25, n. 2, pp.185-196, (2003).

DOI: 10.1016/s0958-9465(02)00018-5

Google Scholar

[4] G.H.D. Tonoli, S.F. Santos, W.N. Santos and H. Savastano Jr. Thermal performance of sisal fiber-cement roofing tiles for rural constructions, Scientia Agricola. Piracicaba, v. 68, n. 1, pp.1-7, January/February (2011).

DOI: 10.1590/s0103-90162011000100001

Google Scholar

[5] J. Fiorelli, R. Schmidt, C.Y. Kawabata, C.E.L. Oliveira, Savastano Jr and J.A. Rossignolo. Eficiência térmica de telhas onduladas de fibrocimento aplicadas em abrigos individuais para bezerros expostos ao sol e à sombra. Ciência Rural. Santa Maria, v. 42, n. 1, pp.64-7, (2012).

DOI: 10.1590/s0103-84782012000100011

Google Scholar

[6] K. Bilba and M. -A Arsene. Silane treatment of bagasse fiber for reinforcement of cementitious composites. Composites Part A, v. 39, pp.1488-95, (2008).

DOI: 10.1016/j.compositesa.2008.05.013

Google Scholar

[7] J. Claramunt, M. Ardanuy and J.A. Garcia-Hortal. Effect of drying and rewetting cycles on the structure and physicochemical characteristics of softwood fibres for reinforcement of cementitious composites, Carbohydrate Polymers. v. 79, pp.200-205, (2010).

DOI: 10.1016/j.carbpol.2009.07.057

Google Scholar

[8] J.M.B. F. Diniz, M. H, Gil and J.A.A.M. Castro. Hornification—its origin and interpretation in wood pulps. Wood Sci Technol. v. 37, p.489–494, (2004).

DOI: 10.1007/s00226-003-0216-2

Google Scholar

[9] A.A. Brancato. Effect of progressive recycling on cellulose fiber surface properties. Thesis of D. Sc, - School of Chemical and Biomolecular Engineering, Georgia Institute of Technology. December (2008).

Google Scholar

[10] S. Ferreira. Influência da hornificação na aderência fibra-matriz e no comportamento mecânico de compósitos cimentícios reforçados com fibras curtas de sisal. Tese de M. Sc. em Engenharia Civil e Ambiental, UEFS, Feira de Santana, Brasil, (2012).

DOI: 10.17771/pucrio.acad.59447

Google Scholar

[11] P.R.L. Lima and R.D. Toledo Filho. Uso de metacaulinita para incremento da durabilidade de compósitos à base de cimento reforçados com fibras de sisal. Ambiente Construído, v. 8, n. 4, pp.7-19, (2008).

DOI: 10.11606/d.3.2010.tde-30122014-162204

Google Scholar

[12] Associação Brasileira de Normas Técnicas. Argamassa para assentamento e revestimento de paredes e tetos: determinação da resistência à tração na flexão e à compressão: NBR 13279. Rio de Janeiro, (2005).

Google Scholar

[13] ASTM C 1557. Standard Test Method for Tensile Strength and Young's Modulus of Fibers, (2003).

Google Scholar

[14] S. Ferreira, P.R.L. Lima, F. Silva and R.D. Toledo Filho. Effect of sisal fiber hornification on the adhesion with portland cement matrices. Materia. v. 17, pp.1024-1034, (2012).

Google Scholar

[15] J. Claramunt, M. Ardanuy, J.A. Garcia-Hortal and R.D. Tolêdo Filho. The hornification of vegetable fibers to improve the durability of cement mortar composites. Cement & Concrete Composites. v. 33, pp.586-595, (2011).

DOI: 10.1016/j.cemconcomp.2011.03.003

Google Scholar

[16] P.J. Herrera-Franco, A.A. Valadez-Gonzalez. A study of the mechanical properties of short natural-fiber reinforced composites. Composites: Part B, v. 36, p.597–608, (2005).

DOI: 10.1016/j.compositesb.2005.04.001

Google Scholar

[17] J.T. Kim, A.N. Netravali. A study of the mechanical properties of short natural-fiber reinforced composites. Composites: Part B. v. 36, p.597–608, (2005).

DOI: 10.1016/j.compositesb.2005.04.001

Google Scholar

[18] T.P. Mohan, K. Kanny. Chemical treatment of sisal fiber using alkali and clay method. Composites: Part A. v. 43, p.1989–1998, (2012).

DOI: 10.1016/j.compositesa.2012.07.012

Google Scholar

[19] L. Salmén, A.M. Olsson, J.S. Stevanic and K. Radotic. Structural Organisation of the Wood Polymers in the Wood Fibre Structure. Biosources. v. 7, pp.521-532, (2012).

DOI: 10.15376/biores.7.1.521-532

Google Scholar