Use of PET Fibers in Reinforced Concrete Slabs Subjected to Flexure

Article Preview

Abstract:

The addition of fibers in order to obtain better performance of mechanical characteristics of concrete has been common place in the last fifteen years in Brazil. Following a request from the Faculty of Architecture at the Federal University of Bahia to replace the Eternit Wall panels with structural deterioration used in its mezzanine floor, this research was developed to analyze the flexural behavior of reinforced concrete slabs with the addition of PET (polyethylene terephthalate) fibers obtained from soda bottles. Selection of this material was based on sustainability since PET wastes represent a serious environmental issue although it can be recycled at a low cost. The importance of this work is based on verifying some of the characteristics of PET fibers reinforced concrete aiming sustainability of civil construction. After laboratory analysis of materials used for slabs, specimens and concrete slabs were shaped with and without PET fibers, being respectively submitted to standard axial compression and flexural tests. Despite the averages of compressive and flexural strengths of slabs with fiber being similar to those without fiber, the firsts presented a better result in terms of cracking, deformation and a less abrupt rupture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

537-547

Citation:

Online since:

December 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. C. Magalhães, Estudo probabilístico da resistência à compressão e da resistência à tração na flexão dos concretos utilizados na construção do dique seco do Estaleiro Rio Grande, no Superporto, em Rio Grande-RS, Federal University of Rio Grande (Master's in Oceanic Engineering), Rio Grande, Rio Grande do Sul (2009).

DOI: 10.32467/issn.2175-3628v23n1a14

Google Scholar

[2] A. G. Coró, Investigação das propriedades mecânicas de concretos reforçados com fibras PET, Regional University of the Northeast of the State of Rio Grande do Sul (Research for a Civil Engineering course), Ijuí, Rio Grande do Sul (2002).

DOI: 10.22239/2317-269x.01822

Google Scholar

[3] A. D. Figueiredo, O concreto com fibras, in: Concreto: Ensino, Pesquisa e Realizações, chapter 39, edited by G. C. Isaia, Brazilian Concrete Institute IBRACON, São Paulo, (2005).

Google Scholar

[4] P. K. Metha and P. J. M. Monteiro, Concreto – Microestrutura, propriedades e materiais, Editora PINI, São Paulo, (2008).

Google Scholar

[5] P. Balaguru, Contribution of fibers to crack reduction of cement composites during the initial and final setting period, in: ACI Materials Journal, American Concrete Institute, Vol. 91, Nº 3, May-June (1994), pp.280-288.

DOI: 10.14359/4334

Google Scholar

[6] I. Padron and R. F. Zollo, Effect of synthetic fibers on volume stability and cracking of Portland Cement Concrete and Mortar, in: ACI Materials Journal, American Concrete Institute, Vol. 87, Nº 4, July-August (1990), pp.327-332.

DOI: 10.14359/2027

Google Scholar

[7] V. Malagavelli and P. N. Rao, Effect of non bio degradable waste in Concrete slabs, in: International Journal of Civil and Structural Engineering, Vol. 1, Nº 3 (2010), pp.449-457.

Google Scholar

[8] V. H. M. Andrade, Faculty of Architecture, Federal University of Bahia (UFBA) – Espaço do Projeto, Espaço da Percepção, Federal University of Bahia (Master's in Architecture), Salvador, Bahia (1989).

DOI: 10.24873/j.rpemd.2021.03.820

Google Scholar

[9] P. Pattabiraman, I. Sbarski, T. Spurling and E. Kosior, Thermal and Mechanical properties of recycled PET and its blends, in: ANTEC 2005 Society of Plastics Engineers Annual Technical Conference (2005), pp.3221-3225.

Google Scholar

[10] J. P. Gorniski and C. S. Karzmierczac: Microestrutura dos polímeros, in: Materiais de Construção Civil e Princípios de Ciência e Engenharia dos Materiais, chapter 12, edited by G. C. Isaia, Brazilian Concrete Institute IBRACON, São Paulo, (2007).

DOI: 10.11606/9788580230635

Google Scholar

[11] Brazilian Association for PET Industry (ABIPET), 9th Brazilian PET Recycling Census, ABIPET, São Paulo (2013).

Google Scholar

[12] S. S. Canellas, Reciclagem de PET, visando a substituição de agregado miúdo em argamassas, Pontifícia Catholic University in Rio de Janeiro (Master's in Materials Science and Metallurgy), Rio de Janeiro (2005).

DOI: 10.17771/pucrio.acad.7374

Google Scholar

[13] F. Pacheco-Torgal, Y. Ding and S. Jalali, Properties and durability of concrete containing polymeric wastes (tyre rubber and polyethylene terephthalate bottles): An overview, in: Construction and Building Materials, Vol. 30, May (2012).

DOI: 10.1016/j.conbuildmat.2011.11.047

Google Scholar

[14] F. J. Forlim and J. S. Farias, Considerações sobre reciclagem de embalagens plásticas, Department of Food Technology, FEA/UNICAMP, São Paulo (2007).

Google Scholar

[15] M. F. David, V. Burdukovska and C. Heng, Possible methods for preventing plastic waste from entering the marine environment, Roskilde University (Master's in Technological and Socio-Economic Planning), Denmark (2012).

Google Scholar

[16] Internal Revenue Service of Brazil, Federal Decree n. 7, 619, of November 21, 2011, Brasília, Brazil (2011).

Google Scholar

[17] R. Salomão and V. C. Pandolfelli, Concretos refratários contendo fibras poliméricas: correlação entre a permeabilidade e o comportamento de secagem, in: 47º Congresso Brasileiro de Cerâmica, João Pessoa, Paraíba (2003).

DOI: 10.1590/s0366-69132003000300009

Google Scholar

[18] S. Mindess, Fibre reinforced concrete – myth and reality, in: Advances in Cement and Concrete, ASCE – American Society of Civil Engineers (1994), pp.217-222.

Google Scholar

[19] L. P. Specht, Comportamento de misturas solo-cimento e fibra submetidas a carregamentos estáticos e dinâmicos visando a pavimentação, Federal University of Rio Grande do Sul (Master's in Engineering), Porto Alegre (2000).

DOI: 10.29289/259453942018v28s1059

Google Scholar

[20] C. D. Johnston, Fiber Reinforced Cements and Concretes, Gordon and Breach Science, Amsterdam, The Netherlands, (2001).

Google Scholar

[21] A. M. Betioli, Degradação de fibras de PET em materiais à base de cimento Portland, Federal University of Santa Catarina (Master's in Engineering), Florianópolis (2003).

Google Scholar

[22] D. A. Silva, A. M. Betioli, P. J. P. Gleize, H. R. Roman, L. A. Gómez and J. L. D. Ribeiro, Degradation of recycled PET fibers in Portland cement-based materials, in: Cement and Concrete Research, Vol. 35 (2005), p.1741–1746.

DOI: 10.1016/j.cemconres.2004.10.040

Google Scholar

[23] J. P. Won, C. I. Jang, S. W. Lee, S. J. Lee and H. Y. Kim, Long-term performance of recycled PET fibre-reinforced cement composites, in: Construction and Building Materials, Vol. 24, Issue 5, May (2010), p.660–665.

DOI: 10.1016/j.conbuildmat.2009.11.003

Google Scholar

[24] C. Albano, N. Camacho, M. Hernández, A. Matheus and A. Gutiérrez, Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios, in: Waste Management, Vol. 29, Issue 10, October (2009), p.2707–2716.

DOI: 10.1016/j.wasman.2009.05.007

Google Scholar

[25] Brazilian Association of Technical Standards, NBR 05738. Concreto – Procedimento para moldagem e cura de corpos de provas cilíndricos, Rio de Janeiro (2003).

Google Scholar

[26] Brazilian Association of Technical Standards, NBR 9776. Agregados – Determinação da massa específica por meio do frasco Chapman, Rio de Janeiro (1987).

Google Scholar

[27] Institute of Technological Research, IPT M9-76 – Determinação da massa específica do agregado graúdo pelo método do picnômetro, São Paulo (1976).

Google Scholar

[28] Brazilian Association of Technical Standards, NBR NM 53. Agregado graúdo – Determinação de massa específica aparente e absorção de água, Rio de Janeiro (2003).

Google Scholar

[29] Brazilian Association of Technical Standards, NBR NM 30. Agregado miúdo – Determinação da absorção de água, Rio de Janeiro (2001).

Google Scholar

[30] Brazilian Association of Technical Standards, NBR NM 248. Agregados – Determinação da composição granulométrica, Rio de Janeiro (2003).

Google Scholar

[31] Brazilian Association of Technical Standards, NBR NM 45. Agregados – Determinação da massa unitária e dos espaços vazios, Rio de Janeiro (2002).

Google Scholar

[32] A. de O. Gomes, Materiais de Construção II (practical class handout), Federal University of Bahia, Polytechnic School, Department of Materials Science and Technology (DCTM), Salvador (2008).

Google Scholar

[33] Brazilian Association of Technical Standards, NBR NM 67. Concreto – Consistência pelo abatimento do tronco de cone, Rio de Janeiro (1998).

DOI: 10.1590/s1517-707620210004.1388

Google Scholar

[34] L. A. F. Bauer, Materiais de Construção. LTC – Livros Técnicos e Científicos S.A., Rio de Janeiro, (2000).

Google Scholar

[35] M. A. de M. Alcântara, J. L. Granju, G. Pons and M. Mouret, Estudo comparativo de soluções mono e bi-fibradas para casos de concreto auto-adensável e concreto vibrado, in: 1º Encontro Nacional de Pesquisa-Projeto-Produção em Concreto Pré-Moldado, São Carlos, São Paulo (2005).

DOI: 10.11606/d.18.2017.tde-01122017-121643

Google Scholar

[36] Brazilian Association of Technical Standards, NBR NM 101. Concreto – Ensaio de compressão de corpos cilíndricos, Rio de Janeiro (1996).

Google Scholar

[37] R. A. C. Ribeiro, C. S. R. Damasceno, M. S. B. de A. Graça and S. Gavazza, Comportamento do concreto reforçado com fibras plásticas produzidas com garrafas PET, in: Revista de Ciência e Tecnologia. Pró-Reitoria de Ciências Exatas e Tecnologia, vol. 1, nº 1, Editora Gama Filho, Rio de Janeiro (2010).

DOI: 10.11606/d.3.2012.tde-29072013-115851

Google Scholar