Hydrodynamic Analysis of Fluid Effect in Rigid Rectangular Tank due to Harmonic Motion

Article Preview

Abstract:

Ground-supported tanks are used to store a variety of liquids. This paper deals possibility numerical modelling reciprocal interaction moving container with fluid in under consideration horizontal harmonic motion reservoirs. It clarify watched phenomenon, illustrate pressure process at a walls of container, from witch it results action of force at a container. The numerical problem analysis is comparing with realised experiment, where steady state motion of fluid was watched and his maximum wave of fluid on the walls of reservoirs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-150

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. W. Houser. Earthquake pressures on fluid containers. California institute of technology, Pasadena, California (1954)

Google Scholar

[2] K. Kotrasová, D. Sojčák. Možnosť riešenia interakcie kvapaliny s nádobou pri harmonickom pohybe. In: Civil and evironmental engineering. Roč. 5, č. 2 (2009), s. 72-78. - ISSN 1336-5835.

Google Scholar

[3] O. R. Jaiswal, S. Kulkarni, P. Pathak. A study on sloshing frequencies of fluid-tank system. The 14th World Conference on Earthquake Engineering, October 12-17, 2008, Beijing, China.

Google Scholar

[4] J. Melcer. Experimental testing of a bridge. Applied Mechanics and Materials, Volume 486, 2014, Pages 333-340.

Google Scholar

[5] V. Michalcová, K. Kotrasová. Influence of Numerical Diffusion on Exactness of Calculation in Software FLUENT. In: Bulletin of The Transilvania University of Brasov. Roč. 5 (54), č. 1 (2012), s. 99-106. - ISSN 2065-2119.

Google Scholar

[6] B. Taraba, Z. Michalec, V. Michalcová, T. Blejchař, M Bojko, M Kozubková. CFD simulations of the effect of wind on the spontaneous heating of coal stockpiles. Fuel. 2014, vol. 118, pp.107-112, ISSN 0016-2361

DOI: 10.1016/j.fuel.2013.10.064

Google Scholar

[7] H. K., Vesteeg, W. Malalasekera. An Introduction to Computational Fluid Dynamics, Pearson Education Limited, England, (2007)

Google Scholar

[8] Fluent Inc. Fluent 6.3 – User's guide. 2003.

Google Scholar