New Austenitic Creep Resistant Steels for Superheaters of USC Boilers

Article Preview

Abstract:

Current trend in increasing steam parameters in ultra-supercritical (USC) boilers requires new materials not only for membrane walls, headers and pipelines but also for superheater and reheater tubes. Newly developed austentitic steels Super304H, TP347HFG and HR3C exhibit superior resistance in steam thanks to their fine-grained microstructure, especially in case of Super304H and TP347HFG. The paper presents the results of verification of properties of these steels tubes including creep resistance of the base metal and welded joints, which show promising level of long-term creep strength of the base metal and weld joints and these results are supplemented by some new knowledge about the development of the microstructure of these steels, especially sigma phase appearance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-80

Citation:

Online since:

December 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Larsen. O.H., "Austenitic steels–mechanical properties, exfoliation, availability", in Material and Quality Assurance. VGB Workshop. May 13-15 2009, Copenhagen. Doc. no 541576

Google Scholar

[2] VdTÜV-Werkstoffblatt 550 - Warmfester Walz- und Schmiedestahl X10CrNiCuNb18-9-3 (1.4907), 12/(2010)

Google Scholar

[3] VdTÜV-Werkstoffblatt 546 - Warmfester Walz- und Schmiedestahl X6CrNiNbN25-20 (1.4952), 12/(2009)

Google Scholar

[4] VdTÜV-Werkstoffblatt 547 - Warmfester Walz- und Schmiedestahl X8CrNi19-11 (1.4908), 12/(2009)

Google Scholar

[5] Chi, C.–Yu, H.-Xie, X. "Advanced austenitic heat-resistant steels for Ultra-Super-Critical (USC) fossil power plants". in Alloy Steel-Properties and Use. InTech. 2011. ISBN 978-953-307-484-9. 171-200

DOI: 10.5772/28412

Google Scholar

[6] ASME Code Case 2328. Austenitic Stainless Steel Seamless Tubes. SA-213/SA-213M, UNS S30432, 18Cr-9Ni-3Cu-Cb-N.

Google Scholar

[7] Abe, F.-Kern, T.-U.-Viswanathan, R. Creep-resistant steels. Woodhead Publishing, Cambridge, (2008)

Google Scholar

[8] ISO 204. Metallic materials - Uniaxial creep testing in tension - Method of test. (2009)

Google Scholar

[9] Seifert, W., "Statistische Kenngrössen aus der Ausvertung von Zeitstandversuchen". In: Warmfeste metallische Werkstoffe, Zittau, Kammer der Technik, 1987, 129.

Google Scholar

[10] Kimmins, S. T.-Coleman, M. C.-Smith, D. J. "An overview of creep failure associated with heat affected zone of ferritic weldments" In: Creep and Fracture of Engineering. Materials and Structures. The Institute of Metals, 1993, 681-694

Google Scholar

[11] Larson, F. R.-Miller, J., "Time-Temperature Relationship for Rupture and Creep Stresses". Trans. ASME. Vol. 74. 765-775, (1952)

DOI: 10.1115/1.4015915

Google Scholar

[12] Hau, J. L.-Seijas, A., "Sigma Phase Embrittlement of Stainless Steel in FCC Service". In: Proc. Corrosion 2006. San Diego (CA). USA. NACE International. 2006, paper 06578

Google Scholar