Selective Sodium Removal from Lithium Chloride Brine with Novel Inorganic Ion Exchanger Li1.4Al0.4Ti1.6 (PO4)3

Article Preview

Abstract:

The powder of Li1.4Al0.4Ti1.6 (PO4) 3 has been synthesized by a solid phase reaction between Li2CO3, Al2O3, TiO2 and NH4H2PO4. Sodium removal was studied in an extensive series of tests involving different ionic exchange process variables such as time and temperature. The results indicate that the Na/Li ion exchange reaction rate increased obviously with increasing temperature, and the Na/Li ion exchange kinetics process of Li1.4Al0.4Ti1.6 (PO4) 3 in lithium chloride solution could be shown approximately by the equation of JMAK. Furthermore, it is concluded that the Na+-removed materials obtained from NASICON-type ceramics synthesized can serve as selective Na+ absorbent due to its high selectivity and larger ion exchange capacity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-6

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Y. Sun, F. Ye, X. F. Song, Extraction of lithium from salt lake brine and mechanism research, Chinese J. Inorg. Chem. 27 (2011) 439-444.

Google Scholar

[2] A.K. Zaniak, M. Leeman, F. Vossebeld, T.J. Visser, B. Schuur, A. B. Haan, Novel extractants for the recovery of fermentation derived lactic acid, Sep. Purif. Technol. 111 (2013) 82–89.

DOI: 10.1016/j.seppur.2013.03.031

Google Scholar

[3] L. Wang, W. Ma, R. Liu, H. Y. Li, C. G. Meng, Correlation between Li+ adsorption capacity and the preparation conditions of spinel lithium manganese precursor, Solid State Ionics, 177 (2006) 1421-1428.

DOI: 10.1016/j.ssi.2006.07.019

Google Scholar

[4] E. R. Losilla, M. A. G. Aranda, S. Bruque, J. Sanz, M. A. París, J. Campo, Sodium Mobility in the NASICON Series Na1+xZr2-xInx(PO4)3, Chem. Mater. 12 (2000) 2134-2142.

DOI: 10.1021/cm000122q

Google Scholar

[5] R. O. Fuentes, F. Figueiredo, F. M. B. Marques, J. I. Franco, Reaction of NASICON with water, Solid State Ionics, 139 (2001) 309-314.

DOI: 10.1016/s0167-2738(01)00683-x

Google Scholar

[6] T. Salkus, A. Dindune, Z. Kanepe, J. Ronis, A. Urcinskas, A. Kezionis, A.F. Orliukas, High lithium ion conductivity glass-ceramics in Li2O–Al2O3–TiO2–P2O5 from nanoscaled glassy powders by mechanical milling, Solid State Ionics, 177 (2006).

DOI: 10.1016/j.ssi.2006.04.010

Google Scholar

[7] J. W. Xu, F.R. Denis, FT-Raman and high-pressure FT-infrared spectroscopic investigation of monocalcium phosphate monohydrate, Ca(H2PO4)·H2O, Spectrochim Acta Part A. 54 (1998) 1869-1878.

DOI: 10.1016/s1386-1425(98)00152-8

Google Scholar

[8] C. M. Burba, R. Frech, Vibrational spectroscopic study of lithium intercalation into LiTi2(PO4)3, Solid State Ionics, 177 (2006) 1489-1494.

DOI: 10.1016/j.ssi.2006.07.015

Google Scholar

[9] °J. Gulens, B.W. Hildebrandt, J.D. Canaday, A.K. Kuriakose, T. A. Weat, A. Ahmad, Influence of water on the electrochemical response of a bonded nasicon protonic conductor, Solid State Ionics, 35 (1989) 45-49.

DOI: 10.1016/0167-2738(89)90010-6

Google Scholar