Electrochemical Performance Cr Doped Spinel LiMn2O4 Cathode for Lithium Ion Batteries

Article Preview

Abstract:

To improve the cycle performance of spinel LiMn2O4 as the cathode of 4 V class lithium ion batteries, spinel were successfully prepared using the sol-gel method. The dependence of the physicochemical properties of the spinel LiCrxMn2-xO4 (x=0,0.05,0.1,0.2,0.3,0.4) powders powder has been extensively investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), charge-discharge test and electrochemical impedance spectroscopy (EIS). The results show that as Mn is replaced by Cr, the initial capacity decreases, but the cycling performance improves due to stabilization of spinel structure. Of all, the LiCr0.2Mn1.8O4 has best electrochemical performance, 107.6 mAhg-1 discharge capacity, 96.1% of the retention after 50 cycles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-53

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. M. Thackeray, A. Kock, M. H. Rossouw, D. Liles, R. Bittihn, D. Hoge, Spinel electrodes from the Li-Mn-O system for rechargeable lithium battery applications, J. Electrochem. Soc. 139(1992) 363-369.

DOI: 10.1149/1.2069222

Google Scholar

[2] J. M. Tarascon, E. Wang, F. K. Shokoohi, W. R. Mckinnon, S. Colson, Spinel phase of LiMn2O4 as a cathode in secondary lithium cells, J. Electrochem. Soc. 138(1991) 2859-2864.

DOI: 10.1149/1.2085330

Google Scholar

[3] A. Pasquier, A. Blyr, A. Cressent, C. Lenain, G. Amatucci, J. M. Tarascon, An update on the high temperature ageing mechanism in LiMn2O4-based Li-ion cells, J. Power Sources. 81-82(1999) 54-59.

DOI: 10.1016/s0378-7753(99)00136-6

Google Scholar

[4] A. Yamada, K. Miura, K. Hinokuma, M. Tanaka, Synthesis and structural aspects of LiMn2O4±δ as a cathode for rechargeable lithium batteries, J. Electroche. Soc. 142(1995)2149-2156.

DOI: 10.1149/1.2044266

Google Scholar

[5] H. S. Park, S. J. Hwang, J. H. Choy, Relationship between chemical bonding character and electrochemical performance in nickel-substituted lithium manganese oxides, J. Phys. Chem. B. 105(2002) 4860-4866.

DOI: 10.1021/jp010079+

Google Scholar

[6] D. Kovacheva, H. Gadjov, K. Petrov, S. Mandal, M. G. Lazarraga, L. Pascual, J. M. Amarilla, R. M. Rojas, P . Herrero, J. M. Rojo, Synthesizing Nanocrystalline LiMn2O4 by a combustion toute, J. Mater. Chem. 12(2002) 1184-1188.

DOI: 10.1039/b107669h

Google Scholar

[7] D. G. Wickham, W. J. Croft, Crystallographic and magnetic properties of several spinels containing trivalent JA-1044 manganese, J. Phys. Chem. Solids. 7(1958) 351-360.

DOI: 10.1016/0022-3697(58)90285-3

Google Scholar

[8] G. Pistoia, D. Zane, Y. Zhang, Some aspects of LiMn2O4 electrochemistry in the 4 volt range, J. Electrochem. Soc. 142(1995) 2551-2557.

DOI: 10.1149/1.2050052

Google Scholar

[9] M. Wakihara, Recent developments in lithium ion batteries, Mater. Sci. Eng. 31(20014) 109-134.

Google Scholar

[10] Y. Xia,Y. Zhou, M. Yoshio, Capacity fading on cycling of 4 V Li/LiMn2O4 cells., J. Electrochem. Soc. 144(1997) 2593-2600.

DOI: 10.1149/1.1837870

Google Scholar

[11] D. H. Jang, Y. J. Shin, S. M. Oh, Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 cells, J. Electrochem. Soc. 143(1996) 2204-2210.

DOI: 10.1149/1.1836981

Google Scholar

[12] M. M. Thackeray, S. H. Yang, A. J. Kahaian, K. D. Kepler, E. Skinner, J. T. Vaughey, S. A. Hackney, Structural fatigue in spinel electrodes in high voltage (4V) Li/LixMn2O4 cells, Electrochem. Solid. ST. 1(1998) 7-9.

DOI: 10.1016/s0378-7753(98)00223-7

Google Scholar

[13] H. Huang, C. A. Vincent, P. G. Bruce, Correlating capacity loss of stoichiometric and nonstoichiometric lithium manganese oxide spinel electrodes with their structural integrity, J. Electrochem. Soc. 146(1999) 3649-3654.

DOI: 10.1149/1.1392528

Google Scholar

[14] R. J. Gummow, A. De Kock, M. M. Thackeray, Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells, Solid State Ionics, 69(1994) 59-67.

DOI: 10.1016/0167-2738(94)90450-2

Google Scholar

[15] P. Barboux, J. M. Tarascon, F. K. Shokoohi, The use of acetates as precursors for the low-temperature synthesis of LiMn2O4 and LiCoO2 intercalation compounds, J. Solid State Chem. 94(1991) 185-196.

DOI: 10.1016/0022-4596(91)90231-6

Google Scholar

[16] M. M. Thackeray, P. J. Johnson, L. A. Picciotto, P. G. Bruce, J. B. Goodenough, Electrochemical extraction of lithium from LiMn2O4, Mater. Res. Bull. 19(1984) 179-187.

DOI: 10.1016/0025-5408(84)90088-6

Google Scholar

[17] K. Kushida, K. Kuriyama, Observation of Li-atomic array in spinel-LiMn2O4 films spin-coated on Si substrates using an atomic force microscopy, Appl. Phys. Lett. 76(2000) 2238-2240.

DOI: 10.1063/1.126307

Google Scholar

[18] S. H. Kang, J. B. Goodenough, L. K. Rabenberg, Effect of ball-milling on 3-V capacity of lithium-manganese oxospinel cathodes, Chem. Mater. 13(2001) 1758-1764.

DOI: 10.1021/cm000920g

Google Scholar

[19] S. Choi, A. Manthiram, Synthesis and electrode properties of metastable Li2Mn4O9-δ spinel oxides, J. Electrochem. Soc. 147(2000) 1623-1629.

DOI: 10.1149/1.1393408

Google Scholar

[20] P. Kalyani, N. Kalaiselvi, N. Muniyandi, A new solution combustion route to synthesize LiCoO2 and LiMn2O4, J. Power Sources, 111(2002) 232-238.

DOI: 10.1016/s0378-7753(02)00307-5

Google Scholar

[21] K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita., J. Electrochem. Soc. 143(1996) 1607-1613.

Google Scholar

[22] Y. P. Fu, Y. H. Su, C. H. Lin, Comparison of microwave-induced combustion and solid-state reaction for synthesis of LiMn2-xCrxO4 powders and their electrochemical properties, Solid State Ionics, 166(2004) 137-146.

DOI: 10.1016/j.ssi.2003.09.018

Google Scholar

[23] H. Benlin, Z. Wenjia, L. Yanyu, B. Shujuan, L. Hulin, Synthesis and electrochemical properties of chemically substituted LiMn2O4 prepared by a solution-based gel method, J. Colloid Interface Sci. 300(2006) 633-639.

DOI: 10.1016/j.jcis.2006.04.002

Google Scholar

[24] S. B. Park, H. C. Shin, W. G. Lee, W. II. Cho, H. Jang, Improvement of capacity fading resistance of LiMn2O4 by amphoteric oxides, J. Power Sources. 180(2008) 597-601.

DOI: 10.1016/j.jpowsour.2008.01.051

Google Scholar

[25] A. D. Robertson, S. H. Lu, W. F. Averill, W. F. Howard Jr, M3+-modified LiMn2O4 spinel intercalation cathodes. I. Admetal effects on morphology and electrochemical performance, J. Electrochem. Soc. 144(1997) 3500-3505.

DOI: 10.1149/1.1838040

Google Scholar

[26] G. H. Li, H. Ikuta, T. Uchida, M. J. Wakihara, The spinel phases LiMyMn2-yO4 (M=Co, Cr, Ni) as the cathode for rechargeable lithium batteries, J. Electrochem. Soc. 143(1996) 178-182.

DOI: 10.1002/chin.199619011

Google Scholar

[27] K. Oikawa, T. Kamiyama, F. Izumi, D. Nakazato, H. Ikuta, M. Wakihara, Neutron and X-ray powder diffraction studies of LiMn2-yCryO4, J. Solid State Chem. 146(1999) 322-328.

DOI: 10.1006/jssc.1999.8351

Google Scholar

[28] Y. P. Wu, E. Rahm, R. Holze, Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries, Electrochimica Acta. 47(2002) 3491-3507.

DOI: 10.1016/s0013-4686(02)00317-1

Google Scholar