Electrical Properties and Chemical Stability of BaCe1-xMoxO3-δ Proton Conductors

Article Preview

Abstract:

Dense BaCe1-xMoxO3-δ ceramics were fabricated by sintering at 1450°C for 7h. All samples were characterized by XRD, SEM. All samples were orthorhombic structure. Electrical conductivities of all samples were measured by AC impedance. Electrical conductivity of Mo-doped samples reaches maximum value when doping content of Mo is 5%, which is one order of magnitude greater than that of BaCeO3. Chemical stability of BaCe1-xMoxO3-δ samples was investigated by immersing samples into the boiling water for 12h. The doping of Mo can partially inhibit the reaction between BaCeO3 and H2O.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-60

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Iwahara, Proton conducting ceramics and their applications, Solid State Ionics 86-88(1996) 9-15.

DOI: 10.1016/0167-2738(96)00087-2

Google Scholar

[2] K.D. Kreuer, Proton-conducting oxides, Annu. Rev. Mater. Res. 33 (2003)333-359.

DOI: 10.1146/annurev.matsci.33.022802.091825

Google Scholar

[3] G.Y. Meng, G.L. Ma, Q.L. Ma, R.R. Peng, X.Q. Liu, Ceramic membrane fuel cells based on solid proton electrolytes, Solid State Ionics 178(7-10) (2007)697-703.

DOI: 10.1016/j.ssi.2007.02.018

Google Scholar

[4] A.K. Azad, J.T.S. Irvine, High density and low temperature sintered proton conductor BaCe0. 5Zr0. 35Sc0. 1Zn0. 05O3-δ Solid State Ionics 179(19-20) (2008)678 -682.

DOI: 10.1016/j.ssi.2008.04.036

Google Scholar

[5] M. Amsif, D. Marrero-Lopez, J.C. Ruiz-Morales, S.N. Savvin, M. Gabás, P. Nunez, Influence of rare-earth doping on the microstructure and conductivity of BaCe0. 9Ln0. 1O3-δ proton conductors, J. Power. Sources 196 (2011)3461-3469.

DOI: 10.1016/j.jpowsour.2010.11.120

Google Scholar

[6] T. Scherban, W. -K. Lee, A. S. Nowick, Bulk protonic conduction in Yb-doped SrCeO3 and BaCeO3, Solid State Ionics 28 -30, (1998) 585-588.

DOI: 10.1016/s0167-2738(88)80106-1

Google Scholar

[7] N. Bonanos, B. Ellis, K.S. Knight, M.N. Mahmood, Ionic conductivity of gadolinium-doped barium cerate perovskites, Solid State Ionics 35(1-2), (1989)179-188.

DOI: 10.1016/0167-2738(89)90028-3

Google Scholar

[8] Z.T. Tao, Zh.W. Zhu, H.Q. Wang, W. Liu, Astable BaCeO3-based proton conductor for intermediate-temperature solid oxide fuel cells, J. Power. Sources 195 (2010) 3481-3484.

DOI: 10.1016/j.jpowsour.2009.12.047

Google Scholar

[9] L. Bi, Z. Tao, C. Liu, W. Sun, H. Wang, W. Liu, Fabricaiton and characterization of easily sintered and stable anode-supported proton-conducting membranes, J. Membr. Sci. 336(1-2) (2009) 1-6.

DOI: 10.1016/j.memsci.2009.03.042

Google Scholar

[10] T. Esaka, Ionic conduction in substituted scheelite-type oxides, Solid State Ionics, 136-137(2000) 1-9.

DOI: 10.1016/s0167-2738(00)00377-5

Google Scholar

[11] N. Nallamuthu, I. Prakash, N. Satyanarayana, M. Venkateswarlu, Preparation, characterization and electrical conductivity studies of nanocrystalline La doped BaMoO4, Mater. Res. Bull. 46(2011)32-41.

DOI: 10.1016/j.materresbull.2010.10.001

Google Scholar

[12] Z.M. Zhong, Stability and conductivity study of the BaCe0. 9−xZrxY0. 1O2. 95 systems, Solid State Ionics, 178(3-4) (2007) 213-220.

DOI: 10.1016/j.ssi.2006.12.007

Google Scholar