Corrosion Behavior of Ti and Ti Based Alloys Used as Implants-Supported Mandibular Overdentures

Article Preview

Abstract:

In the present study, four different types of the commercial dental implants used as support for total/partial dental prosthesis have been investigated. Pure Ti and Ti6Al4V alloy, provided by four different manufactures, were chosen because these were the most used in dentistry market. The corrosion resistance was evaluated by using linear polarization technique, after recording the open circuit curves in Fusayama Meyer artificial saliva for 240 minutes. The corrosion tests in artificial saliva with pH 5.2 have shown that pure Ti exhibited a better behavior than the Ti alloy. This result can be explained by a higher stability of the passive thin layer of titanium oxide than the complex oxide layer formed on the Ti alloy surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-37

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.J. Sadowsky, Treatment considerations for maxillary implant overdentures: a systematic review. J. Prosthet. Dent. , 97 (2007), p.340–348.

DOI: 10.1016/s0022-3913(07)60022-5

Google Scholar

[2] I. Naert, G. Koutsikakis, J. Duyck, M. Quirynen, R. Jacobs, D. van Steenberghe, Biologic outcome of implant-supported restorations in the treatment of partial edentulism, Clinical Oral Implants Research 13(2002), p.381–389.

DOI: 10.1034/j.1600-0501.2002.130406.x

Google Scholar

[3] S. Ghodisi, S. Rasaeipour, Tooth-implant connection: a literature review, World Journal of Dentistry, Vol. 3, Iss. 2 (2012), pp.213-219.

DOI: 10.5005/jp-journals-10015-1159

Google Scholar

[4] B. Engquist, T. Bergendal, T. Kallus, U. Linden, A retrospective multicenter evaluation of osseointegrated implants supporting overdenture. International Journal of Oral Maxilofacial Implants, vol. 3, no. 2 (1988), p.129–134.

Google Scholar

[5] T. Jemt, J. Chai, J. Harnett, M.R. Heath, J.E. Hutton, R.B. Johns, S. McKenna D.C. McNamara, D. van Steenberghe, R. Taylor, R.M. Watson, I. Herrmann, A 5-Year prospective multicenter follow-up report on overdenture supported by osseointegrated implants. Int J Oral Maxilofac Implants, 11 (1996).

DOI: 10.1034/j.1600-0501.1996.070405.x

Google Scholar

[6] D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in medicine: material science, surface science, engineering, biological responses, and medical applications, Ed. Springer, Berlin, Germany, (2001).

DOI: 10.1007/978-3-642-56486-4

Google Scholar

[7] H.U. Hherbert, R.W. Revie, Corrosion and corrosion control, Ed. Jhon Willey & Sons, New York, 1985: 1.

Google Scholar

[8] J. Geis-Gestorfer, H. Weber, Corrosion resistance of the implant materials Contimet 35, Memory, and Vitallium in artificial physiological fluids, Journal for Oral Maxillofac Implants, 3 (1988), pp.135-140.

Google Scholar

[9] N. Ibris, J.C. Mirza-Rosca, EIS study of Ti and its alloys in biological media, Journal of Electroanalytical Chemistry, Vol. 526, No. 1-2 (2002), pp.53-62.

DOI: 10.1016/s0022-0728(02)00814-8

Google Scholar

[10] A.K. Shukla, R. Balasubramaniam, S. Bhargava, Properties of passive film formed on CP titanium, Ti-6Al-4V and Ti-13. 4Al-29Nb alloys in simulated human body conditions, Intermetallics, Vol 13, No. 6 (2005), pp.631-637.

DOI: 10.1016/j.intermet.2004.10.001

Google Scholar

[11] American Society for Metals Handbook. Corrosion, Materials Park: ASM International, (1993).

Google Scholar

[12] L. Reclaru, J.M. Meyer, Effects of fluorides on Titanium and other dental alloys in dentistry, Biomaterials. 1998; 19(1-3): 85-92.

DOI: 10.1016/s0142-9612(97)00179-8

Google Scholar

[13] L.A. Rocha, F. Oliveira, H.V. Cruz, C. Sukotjo, M.T. Mathew, Part III: Bio-tribocorrosion in the clinical environment, 10 - Bio-tribocorrosion in dental applications, Bio-Tribocorrosion in Biomaterials and Medical Implants, A volume in Woodhead Publishing Series in Biomaterials, Edited by:Y. Yan, 2013, p.223.

DOI: 10.1533/9780857098603.3.223

Google Scholar

[14] R. Strietzel, A. Hösch, H. Kalbfleisch, D. Buch, In vitro corrosion of titanium, Biomaterials, Vol. 19, Iss. 16 (1998), p.1495–1499.

DOI: 10.1016/s0142-9612(98)00065-9

Google Scholar

[15] S.W. Dean Jr., W.D. France Jr., S.J. Ketcham, Electrochemical Methods, Handbook on Corrosion Testing and Evaluation, W. H. Ailor (ed), J. Wiley, New York, New York, pp.171-215, (1971).

Google Scholar