The Effect of Heat Treatment on Static and Dynamic Mechanical Properties of Rapidly Solidified and Plastically Consolidated RS442 Aluminium Alloy

Article Preview

Abstract:

Ultra-fine grained metallic materials are characterized by higher mechanical properties comparing with their conventional equivalents. However increase in strength under static load is not always accompanied by improved fatigue behaviour. Previous investigations on submicrocrystalline RS442 aluminium alloy produced by plastic consolidation of rapidly solidified flakes in the extrusion process revealed increase in its high cycle fatigue bending strength caused by annealing at 450°C. The aim of present studies was to evaluate the influence of heat treatment – also precipitation hardening – on static mechanical properties (hardness, tensile and yield strength) and fatigue strength of the alloy determined in high cycle stress controlled bending tests. Correlation between microstructure, static mechanical properties and fatigue behaviour was analyzed too.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-23

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progr. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[2] M. Lewandowska, K.J. Kurzydlowski, Recent development in grain refinement by hydrostatic extrusion, J. Mat. Sci. 43 (2008) 7299-7306.

DOI: 10.1007/s10853-008-2810-z

Google Scholar

[3] M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Progr. Mater. Sci. 51 (2006) 427-556.

Google Scholar

[4] P. Bazarnik, M. Lewandowska, M. Andrzejczuk, K.J. Kurzydlowski, The strength and thermal stability of Al-5Mg alloys nano-engineered using methods of metal forming, Mat. Sci. Eng. A556 (2012) 134-139.

DOI: 10.1016/j.msea.2012.06.068

Google Scholar

[5] T. Hanlon, E.D. Tabachnikova, S. Suresh, Fatigue behavior of nanocrystalline metals and alloys, Int. J. Fatig. 27 (2005) 1147-1158.

DOI: 10.1016/j.ijfatigue.2005.06.035

Google Scholar

[6] P. Cavaliere, P., Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals, Int. J. Fatig. 31 (2009) 1476-1489.

DOI: 10.1016/j.ijfatigue.2009.05.004

Google Scholar

[7] H. Garbacz, Z. Pakiela, K.J. Kurzydlowski, Fatigue properties of nanocrystalline titanium, Rev. Adv. Mat. Sci. 25 (2001) 3 256-260.

Google Scholar

[8] C.S. Chung, J.K. Kim, H.K. Kim, W.J. Kim, Improvement of high-cycle fatigue life in a 6061 Al alloy produced by equal channel angular pressing, Mater. Sci. Eng. A337 (2002) 39-44.

DOI: 10.1016/s0921-5093(02)00010-2

Google Scholar

[9] Y. Estrin, A. Vinogradov, Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview, Int. J. Fatig. 32 (2010) 898-907.

DOI: 10.1016/j.ijfatigue.2009.06.022

Google Scholar

[10] H. Mughrabi, H.W. Höppel, M. Kautz, Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation, Scripta Mater. 51 (2004) 807-812.

DOI: 10.1016/j.scriptamat.2004.05.012

Google Scholar

[11] H. Dybiec, Submicrocrystalline aluminium alloys (in Polish), AGH Univ. Pub., Cracow, (2008).

Google Scholar

[12] H.W. Höppel, H. Mughrabi, A. Vinogradov, Fatigue properties of bulk nanostructured materials, in: M. Zehetbauer, et al. (Eds. ), Bulk nanostructured materials, Wiley VCH Verlag, Weinheim, 2009, pp.481-500.

DOI: 10.1002/9783527626892.ch22

Google Scholar

[13] M. Motyka, T. Tokarski, W. Ziaja, H. Dybiec, J. Sieniawski: High cycle fatigue bending strength of rapid solidified and plastic consolidated RS442 aluminium alloy, J. Mat. Sci. 48 (2013) 4796–4800.

DOI: 10.1007/s10853-013-7238-4

Google Scholar

[14] W. Ziaja, M. Motyka, H. Dybiec, J. Sieniawski: High cycle fatigue bending strength of submicrocrystalline aluminium alloys, Mech. Mater. 67 (2013) 33–37.

DOI: 10.1016/j.mechmat.2013.07.013

Google Scholar

[15] W.D. Pilkey, Peterson's Stress Concentration Factors, Wiley Interscience Pub., New York, (1997).

Google Scholar