[1]
R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progr. Mater. Sci. 45 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[2]
M. Lewandowska, K.J. Kurzydlowski, Recent development in grain refinement by hydrostatic extrusion, J. Mat. Sci. 43 (2008) 7299-7306.
DOI: 10.1007/s10853-008-2810-z
Google Scholar
[3]
M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Progr. Mater. Sci. 51 (2006) 427-556.
Google Scholar
[4]
P. Bazarnik, M. Lewandowska, M. Andrzejczuk, K.J. Kurzydlowski, The strength and thermal stability of Al-5Mg alloys nano-engineered using methods of metal forming, Mat. Sci. Eng. A556 (2012) 134-139.
DOI: 10.1016/j.msea.2012.06.068
Google Scholar
[5]
T. Hanlon, E.D. Tabachnikova, S. Suresh, Fatigue behavior of nanocrystalline metals and alloys, Int. J. Fatig. 27 (2005) 1147-1158.
DOI: 10.1016/j.ijfatigue.2005.06.035
Google Scholar
[6]
P. Cavaliere, P., Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals, Int. J. Fatig. 31 (2009) 1476-1489.
DOI: 10.1016/j.ijfatigue.2009.05.004
Google Scholar
[7]
H. Garbacz, Z. Pakiela, K.J. Kurzydlowski, Fatigue properties of nanocrystalline titanium, Rev. Adv. Mat. Sci. 25 (2001) 3 256-260.
Google Scholar
[8]
C.S. Chung, J.K. Kim, H.K. Kim, W.J. Kim, Improvement of high-cycle fatigue life in a 6061 Al alloy produced by equal channel angular pressing, Mater. Sci. Eng. A337 (2002) 39-44.
DOI: 10.1016/s0921-5093(02)00010-2
Google Scholar
[9]
Y. Estrin, A. Vinogradov, Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview, Int. J. Fatig. 32 (2010) 898-907.
DOI: 10.1016/j.ijfatigue.2009.06.022
Google Scholar
[10]
H. Mughrabi, H.W. Höppel, M. Kautz, Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation, Scripta Mater. 51 (2004) 807-812.
DOI: 10.1016/j.scriptamat.2004.05.012
Google Scholar
[11]
H. Dybiec, Submicrocrystalline aluminium alloys (in Polish), AGH Univ. Pub., Cracow, (2008).
Google Scholar
[12]
H.W. Höppel, H. Mughrabi, A. Vinogradov, Fatigue properties of bulk nanostructured materials, in: M. Zehetbauer, et al. (Eds. ), Bulk nanostructured materials, Wiley VCH Verlag, Weinheim, 2009, pp.481-500.
DOI: 10.1002/9783527626892.ch22
Google Scholar
[13]
M. Motyka, T. Tokarski, W. Ziaja, H. Dybiec, J. Sieniawski: High cycle fatigue bending strength of rapid solidified and plastic consolidated RS442 aluminium alloy, J. Mat. Sci. 48 (2013) 4796–4800.
DOI: 10.1007/s10853-013-7238-4
Google Scholar
[14]
W. Ziaja, M. Motyka, H. Dybiec, J. Sieniawski: High cycle fatigue bending strength of submicrocrystalline aluminium alloys, Mech. Mater. 67 (2013) 33–37.
DOI: 10.1016/j.mechmat.2013.07.013
Google Scholar
[15]
W.D. Pilkey, Peterson's Stress Concentration Factors, Wiley Interscience Pub., New York, (1997).
Google Scholar