Research into the Aluminum-Zirconium Alloys Dedicated for Electirical Purposes

Article Preview

Abstract:

The discussed subject matter concerns the influence of two kinds of Al-Zr alloy production technologies on the properties of the wires dedicated for electrical purposes. The paper presents research and the analysis of the research into the influence of the production technology and the processing technology on the ingot wires made from the heat resistant Al-Zr alloys as well as on the characteristics of the properties of the examined materials with the focus on the electrical and mechanical properties and their microstructure analysis. The materials subject to the mechanical and physicochemical research were materials manufactured in industrial and laboratory conditions in the form of the wire rod and cast bars as well as wires of various diameters drawn from them. The research concerned six Al-Zr alloys with the zirconium content from 0.05 to 0.32% of the mass.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-55

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Knych T., Uliasz P., Piwowarska M.: Stopy aluminium z dodatkiem cyrkonu przeznaczone do zastosowań w elektroenergetyce, Materiały Konferencyjne VII Krakowskiej Konferencji Młodych Uczonych Profuturo Kraków (2012).

Google Scholar

[2] Rokhlin L. L., Bochvar N. R., Boselli J., Dobatkina T. V.: Investigation of the Al-rich part of the Al-Zr-Hf phase diagram for solid state, Journal of Phase Equilibria and Diffusion, 31, 6, 2010, 504÷508.

DOI: 10.1007/s11669-010-9778-5

Google Scholar

[3] Okamoto H.: Desk Handbook: Phase diagrams for binary alloys, ASM International, (2000).

Google Scholar

[4] Belov N. A., Alabin A. N., Prokhorov A. Yu.: The influence that a zirconium additive has on the strength and electrical resistance of cold-rolled aluminum sheets, Russian Journal of Non-Ferrous Metals, Physical Metallurgy and Heat Treatment 50, 4, 2009, 357÷362.

DOI: 10.3103/s1067821209040099

Google Scholar

[5] Okamoto H.: Al-Zr (Aluminum-Zirconium), Journal of Phase Equilibria, 14, 2, 1993, 259÷260.

DOI: 10.1007/bf02667824

Google Scholar

[6] Murray J., Peruzzi A., Abriata J. P.: The Al-Zr (Aluminum-Zirconium) system, Journal of Phase Equilibria, 13, 3, 1992, 277÷291.

DOI: 10.1007/bf02667556

Google Scholar

[7] Mondolfo L. F.: Aluminum alloys: Structure and properties, Butter Worths Group, (1976).

Google Scholar

[8] Wang T., Jin Z., Zhao J. -Ch.: Thermodynamic assessment of the Al-Zr binary system, Section I: Basic and applied research, Journal of Phase Equilibria 22, 5, 2001, 544÷551.

DOI: 10.1007/s12385-001-0072-4

Google Scholar

[9] Okamoto H.: Al-Zr (Aluminium-Zirconium), Journal of Phase Equilibria, 23, 5, 2002, 455÷456.

Google Scholar

[10] Predel B.: Al-Zr (Aluminum-Zirconium), Landolt-Börnstein - Group IV Physical Chemistry 12A, 2006, 1÷3.

DOI: 10.1007/10000866_160

Google Scholar

[11] Janghorban A., Antoni-Zdziobek A., Lomello-Tafin M., Antion C., Mazingue Th., Pisch A.: Phase equilibria in the aluminium-rich side of the Al-Zr system, Journal Thermal Analysis Calorimetry 114, 2013, 1015÷1020.

DOI: 10.1007/s10973-013-3113-4

Google Scholar

[12] Norman A. F., Prangnell P. B., McEwen R. S.: The solidification behavior of dilute Aluminium-Scandium alloys, Acta Materialia 46, 16, 1998, 5715÷5732.

DOI: 10.1016/s1359-6454(98)00257-2

Google Scholar

[13] Ohashi T., Ichikawa R.: A new metastable phase in rapidly solidified Al-Zr alloys, Metallurgical Transactions 3, August 1972, 2300÷2302.

DOI: 10.1007/bf02643251

Google Scholar

[14] Knych T., Uliasz P., Piwowarska M., Mamala A.: Badania odporności cieplnej drutów ze stopów Al-Zr, Hutnik Wiadomości Hutnicze 78, 1, 2011, 38÷40.

Google Scholar

[15] Knych T., Uliasz P.: Parametryzacja długoczasowej odporności cieplnej stopów aluminium z mikrododatkiem cyrkonu, Rudy i Metale Nieżelazne 55, 8, 2010, 547÷551.

Google Scholar

[16] Knych T., Mamala A., Uliasz P.: Odporne cieplnie druty ze stopu Al-Zr do napowietrznych przewodów elektroenergetycznych typu HTLS, Hutnik Wiadomości Hutnicze 73, 1÷2, 2007, 46÷48.

DOI: 10.15199/24.2017.8.12

Google Scholar

[17] Knych T., Mamala A., Uliasz P., Heat-resistant parameters of Al-Zr electrical alloy wires used for HTLS conductors, Wire Journal International 43, 10, 2010, 86÷93.

Google Scholar

[18] Uliasz P., Knych T., Mamala A., Smyrak B.: Investigation in properties design of heat resistant Al-Zr-Sc alloy wire assigned for electrical application, Aluminium Alloys: Their Physical and Mechanical Properties; [proceedings of the 11th International Conference on Aluminium Alloys, 22÷26 Sept. 2008, Aachen, Germany] Jürgen Hirsch, Birgit Skrotzki, Günter Gottstein, John Wiley & Sons 2008, 248÷255.

DOI: 10.1002/9781118495292.ch266

Google Scholar

[19] Forbord B., Lefebvre W., Danoix F., Hallem H., Marthinsen K.: Three dimensional atom probe investigation on the formation of Al3(Sc, Zr)-dispersoids in aluminium alloys, Scripta Materialia 51, 2004, 333÷337.

DOI: 10.1016/j.scriptamat.2004.03.033

Google Scholar

[20] Robson J. D., Prangnell P. B.: Modelling Al3Zr dispersoid precipitation in multicomponent aluminium alloys, Materials Science and Engineering A352, 2003, 240÷250.

DOI: 10.1016/s0921-5093(02)00894-8

Google Scholar

[21] Nie Z., Jin T., Fu J., Xu G., Yang J., Zhou J., Zuo T.: Research on rare earth in aluminium, Materials Science Forum, 396÷402, 2002, 1731÷1735.

DOI: 10.4028/www.scientific.net/msf.396-402.1731

Google Scholar

[22] Knipling K. E., Karnesky R. A., Lee C. P., Dunand D. C., Seidman D. N.: Precipitation evolution in Al–0. 1Sc, Al–0. 1Zr and Al–0. 1Sc–0. 1Zr (at. %) alloys during isochronal aging, Acta Materialia 58, 2010, 5184÷5195.

DOI: 10.1016/j.actamat.2010.05.054

Google Scholar

[23] Forbord B., Lefebvre W., Danoix F., Hallem H., Marthinsen K.: Three dimensional atom probe investigation on the formation of Al3(Sc, Zr)-dispersoids in aluminium alloys, Scripta Materialia 51, 2004, 333÷337.

DOI: 10.1016/j.scriptamat.2004.03.033

Google Scholar

[24] Fridlyander I. N., Borovskikh S. N., Yakimova E. G.: Effect of zirconium additives on the properties of plates of type V95pch alloy, Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, 3, 1982, 28÷30.

DOI: 10.1007/bf01166848

Google Scholar

[25] Weiland H., Cheong S.: The role of zirconium additions in recrystallization of aluminum alloys, Materials Science Forum, 558÷559, 2007, 383÷387.

DOI: 10.4028/www.scientific.net/msf.558-559.383

Google Scholar

[26] Guo J. Q., Ohtera K.: An intermediate phase appearing in L12 , -Al3Zr to DO23-Al3Zr phase transformation of rapidly solidified Al-Zr alloys, Materials Letters 27, 1996, 343÷347.

DOI: 10.1016/0167-577x(96)00002-x

Google Scholar

[27] Riddle Y. W., Sanders Jr. T. H.: A study of coarsening, recrystallization, and morphology of microstructure in Al-Sc-(Zr)-(Mg) alloys, Metallurgical and Materials Transactions A 35a, January 2004, 341÷350.

DOI: 10.1007/s11661-004-0135-3

Google Scholar

[28] Knipling K. E., Dunand D. C., Seidman D. N.: Nucleation and precipitation strengthening in dilute Al-Ti and Al-Zr alloys, Metallurgical and Materials Transactions A, 38A, October 2007, 2552÷2563.

DOI: 10.1007/s11661-007-9283-6

Google Scholar

[29] Li H., Bin J., Liu J., Gao Z., Lu X.: Precipitation evolution and coarsening resistance at 400°C of Al microalloyed with Zr and Er, Scripta Materialia 67, 2012, 73÷76.

DOI: 10.1016/j.scriptamat.2012.03.026

Google Scholar

[30] Yan S.: Strengthening aluminium by zirconium and chromium, Worcester Polytechnic Institute, Thesis of Master of Science, December (2012).

Google Scholar

[31] Blankenship Jr. C. P. Starke Jr. E. A., Hornbogen E.: Microstructure and properties of aluminium alloys, Microstructure and Properties of Materials (Volume 1) Edited by: Li J. C. M., Chapter 1, World Scientific Publishing Co.

DOI: 10.1142/9789814261326_0001

Google Scholar

[32] Hallem H., Forbord B., Marthinsen K.: Development of aluminium alloys with ultimate recrystallisation resistance, Materials Science Forum 539÷543, 2007, 167÷172.

DOI: 10.4028/www.scientific.net/msf.539-543.167

Google Scholar

[33] Kashyap K. T.: Effect of zirconium addition on the recrystallization behaviour of a commercial Al–Cu–Mg alloy, Bull. Mater. Sci., 24, 6, December 2001, 643÷648.

DOI: 10.1007/bf02704014

Google Scholar

[34] Forbord B., Lefebvre W., Danoix F., Hallem H., Marthinsen K.: Three dimensional atom probe investigation on the formation of Al3(Sc, Zr)-dispersoids in aluminium alloys, Scripta Materialia 51, 2004, 333÷337.

DOI: 10.1016/j.scriptamat.2004.03.033

Google Scholar

[35] Kula A., Bronicki M., Sobota J.: Wpływ dodatków skandu oraz cyrkonu na strukturę i własności aluminium, Rudy i Metale Nieżelazne 51, 2, 2006, 97÷105.

DOI: 10.15199/67.2015.10.6

Google Scholar

[36] Laé L.: Étude de la précipitation en dynamique d'amas dans les alliages d'aluminium et dans les aciers, Thèse de doctorat, Institut National Polytechnique de Grenoble, (2004).

Google Scholar

[37] Alatalo M., Weinert M., Watson R. E.: Stability of Zr-Al alloys, Physical Review B 57, 4, 15, 1998, 2009÷(2012).

Google Scholar

[38] Humphreys, F. J. and Hatherly, M., Recrystallisation and related annealing phenomena, Pergamon, Oxford, (1995).

Google Scholar

[39] Forbord B., Hallem H., Marthinsen K.: The effect of alloying elements on precipitation and recrystalization in Al-Zr alloys, Materials Forum 28, 2004, 1179÷1185.

Google Scholar

[40] Mahmudi R., Sepehrband P., Ghasemi H.M.: Improved properties of A319 casting alloy modified with Zr, Materials Letters 60, 2006, 2606÷2610.

DOI: 10.1016/j.matlet.2006.01.046

Google Scholar